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Abstract 
 

The ability to accurately evaluate player and team performances in profes- 
sional sport is particularly valuable. Doing so provides competitive advan- 
tages include extracting important information regarding the tactical strate- 
gies of future oppositions and producing player rating systems. A common 
method of evaluating player and team performances is via expected posses- 
sion value (EPV) models. EPV models assign a value to every location and/or 
action on the pitch, which reflects the probability of points being scored 
within a given time period. 

EPV models have been produced in several sports, including football, bas- 
ketball and ice hockey. However, there is limited research surrounding these 
models in rugby league. Rugby league has a unique set of rules, including a 
six tackle attacking set and five possible scoring options at the end of a pos- 
session. These two factors, alongside the poor data availability in the sport 
ensure that the majority of previous methods cannot be adapted for use in 
rugby league. Therefore the aim of this thesis was to develop new method- 
ologies evaluating player and team performances in rugby league. 

In the first section of this thesis (studies 1 and 2), previous Markov models 
using zonal approaches were applied, adapted and extended in rugby league 
to provide insights into player and team performances. Six EPV models 
were produced with varying zone sizes using Markov Reward Processes. The 
Kullback-Leibler Divergence was used to evaluate the zone sizes which could 
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reproduce future team attacking performances. The model was then extended 
to incorporate actions and context nodes using Markov Decision Processes. 
Novel methods of evaluating player and team performances were also pro- 
duced. 

In the second section (studies 3 and 4), novel models producing smooth pitch 
surfaces were developed. The spatial trends of team attacking performances 
were evaluated using Kernel Density Estimation. Two novel Wasserstein dis- 
tance metrics were used to provide valuable insights into team performances. 
A novel approach to the estimation of individual possession outcomes was 
also proposed using a Bayesian mixture model approach. The model used lin- 
ear and bilinear interpolation techniques for its weights to produce a smooth 
pitch surface. Novel performance metrics evaluating player and team perfor- 
mances were also created. 

The research provides new methodologies for use within rugby league, pro- 
viding zonal and smooth EPV models through which player and team per- 
formances can be evaluated. Professional experts were impressed with the 
results they provided and validated their use within the sport. 
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Chapter 1  
Introduction 

 
1.1 Background 

In the past two decades there has been an exponential increase in the amount of player 
data generated by sports teams. This increased data availability has been driven by the 
widespread use of wearable technology (e.g. global positioning system (GPS) units and 
heart rate monitors) and the introduction of event level match play data annotation and 
computer vision technologies. GPS units allow practitioners to understand the distances 
players run in a match and the accelerations and decelerations that they experience. Heart 
rate monitors allow the heart rate of players to be monitored alongside locomotor infor- 
mation to understand how hard a player is working physically. Event level data provides 
information surrounding the events or actions that occur within match play (e.g. passes, 
runs and kicks). In most sports, including rugby league, it is collected via human annota- 
tion. Human annotation involves an individual watching matches and coding each event 
that occurs in the match. It can happen either live or retrospectively. Recently, event level 
information has been extended and improved in some sports, most notably football, by the 
use of computer vision technologies, which allow more data to be provided for each event 
(e.g. the location of other players in the same video frame, rather than just the player 
performing the action (StatsBomb,2022)). 

With the influx of wearable technology data across all team sports, the number of 
published sports science research studies has exploded in recent years. Research provid- 
ing physiological insights is therefore available across multiple sports (Whitehead et al., 
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2018) or specific to individual sports such as football (Whitehead et al.,2018), hockey 
(Gabbett,2010) or rugby (Dalton-Barron et al.,2020). Unlike wearable technology data, 
which is widely available across all sports, the use of event level data to provide tactical 
insights is less common. Within the scope of this PhD, tactical insights refer to under- 
standing team and player performances through the use of match event data (i.e. the 
actions players or teams perform on the pitch). Advanced tactical analyses are becoming 
increasingly common in those sports which are early adopters of computer vision tech- 
nologies as a method of event level data annotation (e.g. football and basketball (Cervone 
et al.,2016;Decroos et al.,2019;Fern ández et al.,2021;Liu et al.,2020)). Through the 
use of computer vision technologies, these sports can produce the large quantities of data 
necessary for advanced methods such as deep learning (Fernández et al.,2021) or deep 
reinforcement learning (Liu et al.,2020) to be conducted. They have been able to pro- 
duce significant insights, which in some sports have resulted in drastic tactical changes 
(e.g. basketball, where there has been a large increase in 3-point shooting since research 
showed that it was a more efficient method of scoring than attempting 2-point shots (Co- 
hen,2016)). In other sports, with low data availability, the analysis of match event level 
data is still uncommon. 

Rugby league is an example of a sport with low match event level data availability. It 
is a field based collision sport, where two teams of 13 players attempt to score points over 
two 40 minute halves. Within each half, the teams attempt to progress as far as possible 
towards the opposition try line within their allotted set of six tackles. The sequence of 
actions leading to a tackle is called a ’play’, and the sequence of six plays is termed a 
’set’. At the end of each set, a team either scores points, receives an additional set of six 
plays due to a foul/error by the opposition, or loses possession due to a failed scoring 
attempt, a kick which is caught by the opposition, or a handover, where the opposition is 
given the ball to start their set of plays at the position of the sixth tackle. As such, each 
set may have as many as six tackles, but if one of the set-ending actions described above 
occurs, the set may be finish before the sixth play is completed. If the opposition commits 
fouls or makes errors, an attacking team may complete multiple sets within a possession 
before the opposition begins their next set of plays. There are four methods of scoring 
points: an unconverted try, where the ball is grounded beyond the opposition try line (4 
points); a converted try, where the ball is grounded beyond the opposition try line and a 
subsequent conversion kick is scored (6 points); a penalty goal, where the ball is kicked 
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between the opposition posts from the floor (2 points); and a drop goal, where the ball is 
kicked between the posts from a player’s hands (1 point). At the end of the match, the 
team which scores the most points is declared the winner. Since 2019, if the teams’ points 
are level at the end of the match, an additional 10 minutes of extra time (5 minutes in each 
half) have been played on a ’golden point’ basis, whereby the first team to score a point 
of any kind is declared the winner. 

 
1.2 Motivation 

Rugby league has a rich history of using wearable technology to monitor and improve ath- 
lete performance (Dalton-Barron et al.,2020;Glassbrook et al.,2019) and has recently 
embraced the introduction of instrumented mouth guards as a method of understanding 
concussion incidence (Tierney et al.,2021;Tooby et al.,2022). However, much less re- 
search has taken place regarding the tactical demands of the game (Kempton et al.,2016; 
Parmar et al.,2018;Woods et al.,2017). There are several reasons for this. First, there is 
reduced data availability compared to other sports, such as basketball or football. Action 
by action data annotation has only recently been introduced in rugby league, with com- 
puter vision technologies which can handle the regular occlusion of the ball/players not 
yet developed for the sport. Further to this, the GPS units used by the teams regularly 
have signal issues in enclosed places such as the stadiums where matches are played, 
which can result in lost data. They also aren’t accurate enough (Song et al.,2022) to be 
used for the same type of tracking and match event data analysis previously employed 
in football (Fernández et al.,2021) or basketball (Cervone et al.,2016). Previous analy- 
sis using event level only data has been conducted in football (Decroos et al.,2019) but 
the authors used separate models to evaluate the probability of a goal being scored or 
conceded. Rugby league has five possible possession outcomes, so adapting this model 
to the sport would result in an excessive requirement of eight separate models (one for 
each outcome scored and one for each outcome conceded). A further modelling consid- 
eration is the episodic nature of rugby league, which is ideally suited to the Markovian 
approach used byKempton et al.(2016). Their approach combines all possible possession 
outcomes into a single value, but this limits the flexibility of the model as information re- 
garding each individual possession outcome is lost. It is further limited by the requirement 
to identify areas on the pitch through which data is aggregated. In rugby league, a sport 
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with a standard 100m x 70m pitch, where points can be scored across the pitch width, it 
is extremely difficult to accurately identify these areas. This requirement is much simpler 
in basketball, where it has previously been employed and there are specific shooting areas 
which can be used (Cervone et al.,2016). Regardless of these concerns, a smooth pitch 
surface would be more desirable than a zone based approach. Unfortunately, the limited 
data availability in rugby league (typically 180 matches per season and one league of data 
available vs over 300 matches available per season per league across multiple European 
Leagues in football) has ensured that the machine learning (Decroos et al.,2019) and deep 
learning (Fernández et al.,2021;Liu et al.,2020) methodologies currently used to obtain 
smooth pitch surfaces in other sports cannot yet be adapted to rugby league. As a result of 
these differences, there is a need to develop a framework through which the tactical ele- 
ments of rugby league can be analysed within the constraints of low data availability (i.e. 
using only the event level data available) and accounting for the multiple point scoring 
possession outcomes present within the sport. 

Across all sports, the two key tactical elements through which insights can be provided 
are team performances and player performances. Evaluating opposition team perfor- 
mances can allow strategies for future matches to be produced, maximising the chances 
of beating the opposition. Understanding player performances objectively can help to 
identify players who provide better or worse value for the salary they are paid. Both ele- 
ments are important in all sports, but in rugby league they are perhaps more important due 
to the salary cap employed which means that teams can only spend a specified amount of 
money on all players within their squad. This salary cap has the dual effect of reducing 
the differences in player quality between teams compared to other sports (e.g. football, 
where the richer clubs can offer better players significantly higher salaries) and increas- 
ing the importance of tactical strategies with regard to the match outcome as two evenly 
matched teams are more likely to be separated by their ability to work as a unit than by 
individual moments of brilliance. 

With high quality player tracking and event level data available in football, basketball 
and ice hockey, the use of modern deep learning (Decroos et al.,2019;Fern ández et al., 
2021), deep reinforcement learning (Liu and Schulte,2018;Routley and Schulte,2015) 
and probabilistic (Cervone et al.,2016) methods to evaluate player and team performances 
has become more prominent. These models are able to provide excellent analyses of team 
and player performances, allowing coaches to identify strategies to beat opposition teams 
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and evaluate undervalued players, who may be good transfer targets. Unfortunately, the 
research in these sports is much more limited with respect to its applicability to rugby 
league due to the sport’s lower quantity and quality of available data and its more compli- 
cated point scoring system. Indeed, action by action data only became available in rugby 
league in 2020, so the only studies considering any kind of spatial data at the onset of this 
thesis have been conducted using play by play data (Holbrook et al.,2019;Kempton et al., 
2016).Kempton et al.(2016) used dynamic programming to estimate the value of differ- 
ent locations on the pitch dependent on the next scoring action. Their work combined all 
possession outcomes into a single value and utilised a zonal approach, the limitations of 
which are discussed above.Holbrook et al.(2019) used a deep learning approach to con- 
currently predict six outcomes, including: expected metres gained by the play; expected 
try scored within the play/set; and predicted match outcome. They were able to produce 
a smooth pitch surface, but required more than 250,000 play by play observations across 
three seasons of National Rugby League to do so using their deep learning approach. 
This size of dataset is not available in the Super League, which is the focus of this thesis. 
Furthermore, the application of both studies to team or player performance analysis is 
limited by their use of play-by-play data, rather than action by action data, which wasn’t 
available at the time they were published. There is therefore a gap in the rugby league 
literature whereby a methodology, which can evaluate player and team performances on 
an action by action level, providing a smooth pitch surface and estimating the individual 
probabilities of possession outcomes is required. 

This research will address the gap in the literature by providing new methodologies 
to evaluate player and team performances using action by action data in rugby league - a 
sport with low data availability. The project is part of a collaboration between the Rugby 
Football League, Carnegie School of Sport and School of Built Environment, Engineering 
and Computing at Leeds Becket University. The overarching aim was to provide new 
insights into rugby league through the use of advanced data analytics methods. 

 
1.3 Goals and Objectives 

This PhD project aims to develop new methodologies to evaluate player and team perfor- 
mances in rugby league using match event level data. To achieve this goal, the following 
objectives will be met. 
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O1Investigate existing methodologies of evaluating player and team performance in 
team sports, focusing on their application to rugby league 

O2Apply and adapt existing methodologies and metrics evaluating player and team 
performances in team sports to rugby league 

O3Validate adapted versions of existing methodologies and metrics for usability and 
reliability in rugby league 

O4Develop novel methodologies and metrics to evaluate player and team performances 
in rugby league 

O5Validate proposed methodologies and metrics for usability and reliability with re- 
spect to evaluating player and team performances in rugby league 

The data for the project was provided by the Rugby Football League and is proprietary 
data owned by Opta/Stats Perform. Throughout the duration of the PhD, StatsPerform 
purchased Opta and progressively improved their data collection processes allowing for 
more advanced studies to take place as shown within the goals of the project. Unfortu- 
nately, as data collection processes were improving, action definitions were also changed, 
ensuring that for each study, only one season of data could be used. Ethical approval 
was obtained prior to any analyses being conducted (AppendixA). The ethical approval 
allowed teams to be named, but not players. As such, all player names are pseudonyms 
within this thesis. 

 
1.4 Thesis Scope 

In order to achieve the objectives for this thesis, the current literature will be applied, 
adapted and extended within rugby league before a novel approach to the estimation of 
EPV is considered. In doing so, two types of pitch surfaces will be produced: zonal and 
smooth. 

Zonal pitch surfaces will be produced by applying, adapting and extending work pre- 
viously published in rugby league (Kempton et al.,2016). Markov models will be used to 
establish the value of zones on the pitch. The Kullback-Leibler Divergence will be used 
to empirically evaluate the most appropriate zone sizes for use in rugby league based 
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on their ability to reproduce future attacking performances. Empirically evaluating these 
zone sizes will extend previous literature (Kempton et al.,2016;Singh,n.d.), which has 
arbitrarily chosen its zone sizes. Initially, Markov Reward Processes will be used as 
their effectiveness has previously been shown in rugby league (Kempton et al.,2016) 
before concepts are adapted from football (Singh,n.d.) and ice hockey (Routley and 
Schulte,2015) to produce a Markov Decision Process model which incorporates context 
nodes. Novel z-score analysis of team performances will be shown, with action impact 
ratings adapted from ice hockey (Routley and Schulte,2015) used to evaluate player per- 
formances. 

Smooth pitch surfaces will be produced to provide an understanding of the spatial 
trends of attacking performances and to produce a novel EPV model. First, previous work 
in American football (Mallepalle et al.,2020) will be adapted, applied and extended in 
rugby league to provide an understanding of the spatial trends of attacking performances. 
Kernel Density Estimation will be used to evaluate the probability that a team will per- 
form an attacking action in any location on the pitch. These models will be produced at 
the whole league, between team and within team levels. The Wasserstein distance will be 
used to quantify differences between and within teams. Novel metrics will be produced 
by manipulating the cost function (normalised axis Wasserstein distance) and transport 
matrix (directional Wasserstein distance) properties of the Wasserstein distance. Subse- 
quently, a novel Bayesian approach to the estimation of EPV will be shown. A Bayesian 
Mixture Model with custom weights for each centre calculated using linear and bilin- 
ear techniques will be used to estimate the probability of individual possession outcomes. 
These possession outcomes will be evaluated individually and an EPV measure will be de- 
rived using their real points scoring values. Models will be produced at the whole league, 
team attacking and team defending levels. Novel metrics evaluating team (expected points 
scored) and player (actual vs expected ratings) performances will be proposed. 

 
1.5 Thesis Structure 

Figure1.1is a schematic outlining a timeline for the project, the objectives and how each 
study fits within the literature. It shows the links between the literature and specific stud- 
ies, and the applicability of different studies to rugby league using a traffic light system 
(red: not applicable; amber: elements applicable; green: fully applicable). Details sur- 
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Figure 1.1: Overview of thesis outlining most important literature, timeline and how the 
work links to the literature. Note: Objective 1 was completed by Chapter2, but was not 
included in the schematic as it is not a specific study. 

 
 

rounding publications, presentations, the methods used and objectives achieved are also 
provided. To achieve the objectives described in Section1.3, this PhD thesis is arranged 
into seven chapters and four appendices. Chapter2(the literature review) meets objective 
1 by investigating existing methodologies in team sports; Chapters3and4meet objec- 
tive 2 by applying, adapting and extending existing methodologies and metrics to rugby 
league; and Chapters5and6meet objectives 4 and 5 by developing novel methodologies 
and metrics to evaluate player and team performances in rugby league. The results from 
Chapters3-4and5-6were presented to coaches to evaluate their performances against 
objectives 3 and 5 respectively. 

• Chapter2provides an overview of the elements of rugby league important to this 
thesis and investigates the sports analytics literature with respect to player and team 
performances in team sports. The sports analytics literature is evaluated with re- 
spect to its potential application to rugby league. The limitations of the rugby league 
literature are discussed. 

• Chapter3describes the adaptation of an expected possession value (EPV) model 
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to analyse team attacking performances in rugby league using play by play data 
and a Markov Reward Process approach. The locations of 59,233 plays from 180 
matches in the 2019 Super League season were used. The study applied, adapted 
and extended previous work in rugby league (Kempton et al.,2016) and football 
(Singh,n.d.). The Monte Carlo every visit algorithm was used to simulate EPVs 
for the EPV-308. Five further models were constructed from the EPV-308 and 
the KL Divergence was used to establish the models’ ability to reproduce future 
team attacking performances. A novel method to highlight the value generated by 
teams in different zones on the pitch was proposed. It was published in PLOS One 
(Thomas Sawczuk, Anna Palczewska, Ben Jones. Development of an expected 
possession value model to analyse team attacking performances in rugby league. 
PLOS One, 16(11): e0259536, 2021) and presented to the England Rugby League 
Performance Unit for feedback. 

• Chapter4extends the EPV model from Chapter3to analyse player and team perfor- 
mances using action by action data in rugby league for the first time. The locations 
of 77,045 actions from 63 matches in the 2020 Super League season were used. A 
Markov Decision Process approach, via the Monte Carlo every visit algorithm, was 
used to estimate action values conditional on their location. Context nodes were 
adapted from previous research in ice hockey (Routley and Schulte,2015) to pro- 
vide further insights into player performances and allow individual team analyses 
to be conducted. An action impact rating was adapted from ice hockey (Routley 
and Schulte,2015) to evaluate the performances of players based on the actions 
they took. The work was presented at the UKCI 2021 conference and published 
in Advances in Computational Intelligence Systems (Thomas Sawczuk, Anna Pal- 
czewska, Ben Jones. Markov Decision Processes with contextual nodes as a method 
of assessing attacking player performance in rugby league. In: Jansen, T., Jensen, 
R., Mac Parthalain, N., Lin, CM. (eds) Advances in Computational Intelligence 
Systems. UKCI 2021. Advances in Intelligent Systems and Computing, vol 1409. 
Springer, Cham.). It was presented to the Leeds Beckett University Sport Science 
Department for feedback. 

• Chapter5evaluates the use of kernel density estimation (KDE) and the Wasserstein 
distance to understand the spatial trends of attacking performances in rugby league 
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between and within teams. 99,966 actions from 138 matches in the 2021 Super 
League season were used. The study applied, adapted and extended previous work 
in American football (Mallepalle et al.,2020) by using KDEs to understand the lo- 
cation densities of team actions across the whole league season and against specific 
opponents. Two novel metrics (the normalised axis Wasserstein distance and direc- 
tional Wasserstein distance) were computed from the Wasserstein distance to com- 
pare the 2-dimensional location densities between and within teams. The results 
showed that differences between and within teams could be evaluated and sum- 
marised in a simple graph for benchmarking purposes. The work was presented at 
UKCI 2022 and will be published in a future edition of Advances in Computational 
Intelligence Systems. It was presented to coaches at Leeds Rhinos Rugby League 
club for feedback. 

• Chapter6proposes a novel Bayesian approach to producing a smooth EPV model, 
which allows for better evaluation of player and team performances. 99,966 actions 
from 138 matches in the 2021 Super League season were used. A Bayesian Mixture 
Model approach, adopting centres and the use of linear and bi-linear interpolation 
techniques rather than zones, was used to generate an EPV model, which individu- 
ally estimated the probability of each possession outcome in the same model for the 
first time. Models were produced at the whole league, individual team attacking and 
individual team defending levels. This approach was able to differentiate between 
the strengths and weaknesses of different teams across the pitch. It was combined 
with the KDE’s from Chapter5to generate a novel expected points scored metric. 
Player performances were evaluated by a novel actual vs expected contribution to 
the final possession outcome metric. The work was presented to the Leeds Rhinos 
coaching staff and will be prepared for publication in a sports journal. 

• Chapter 7 summarises the outcomes of this thesis. It highlights the contributions of 
each chapter, shows how they met the objectives of the project and considers future 
directions for the body of work. 
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Chapter 2  
Literature Review 

 
This chapter presents a detailed discussion of the literature relevant to the objectives of this 
thesis. First, the types of data collected by professional sports teams are introduced. Next, 
the use of this data to evaluate team and player performances in the wider context of sports 
excluding rugby league is discussed. Rugby league and its rules are then introduced, 
and the literature evaluating player and team performances within the sport is evaluated. 
The summary section outlines the difficulties with adapting some elements of previous 
research in other sports to rugby league and identifies those methods which could be 
adapted to evaluate player and team performances in rugby league. Finally, a high level 
computational overview of the methods utilised in this thesis is provided. 

 
2.1 Data in Team Sports 

Recently, there has been a large increase in the quantity of data produced by sports teams 
regarding their players’ performances in training and match play. The data obtained by 
these teams can broadly be split into two areas: physiological data and tactical data. Phys- 
iological data provides information surrounding the body of the athlete and can be used 
to understand how hard the athlete is working physically (McArdle et al.,2015). Tacti- 
cal data provides information surrounding the technical and tactical events (e.g. passes, 
runs, kicks) that take place and can be used to understand the match play performances of 
players or teams (Hughes et al.,2019). 

Physiological data is typically collected using wearable technologies, including global 
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positioning system (GPS) units, heart rate monitors and instrumented mouth guards. GPS 
units use satellite-based radio navigation to understand the location of players during 
training or match play. From this information, practitioners can understand how hard 
a player has worked in terms of total running demands, accelerations, decelerations or 
amount of time spent at/above/below a given running speed threshold. Heart rate mon- 
itors are typically used alongside GPS units to understand objectively how hard a given 
workload is for the athlete. This is achieved by comparing the heart rate to the workload 
the athlete has performed. Instrumented mouth guards are mouth guards fitted with ac- 
celerometers, which are worn by players to allow practitioners to quantify the magnitude 
of head impacts. With the exception of instrumented mouth guards, which are a recent 
innovation, wearable technologies have been available to sports practitioners for approx- 
imately 20 years. Consequently, there is a widespread body of research understanding 
the information these technologies can collect and how they can be used to help im- 
prove training practices. For example, research of this nature has been conducted across 
multiple sports (Whitehead et al.,2018) or specific to individual sports such as football 
(Whitehead et al.,2018), hockey (Gabbett,2010) or rugby (Dalton-Barron et al.,2020). 

Tactical data is collected via event level data annotation and is usually limited solely 
to match play situations. The two key methods of annotating event level data are human 
annotation and computer vision technologies (Pappalardo et al.,2019;Vats et al.,2020). 
Human annotation involves a human watching a video of a match and annotating informa- 
tion surrounding each event that occurs. This annotation can take place either live (i.e. as 
the match is happening) or retrospectively (i.e. after the match has been completed). The 
data collected typically contains an estimated location of the event and details regarding 
the event type, the player who completed it and the event outcome. Computer vision tech- 
nologies have recently been employed in some early adopting sports to enhance the detail 
of event level data annotation. For example, in basketball, it is now possible to understand 
the location of every player on the court using multiple cameras located around the sta- 
dium perimeter (Barker,2016). Similarly, in football, it is possible to know the location 
of every player in the same television frame as an action being performed if the television 
feed is available (StatsBomb,2022). The same computer vision technology allows play- 
ers to be tracked and provides a method through which their locations can be collected 
for tactical analyses. Such information is extremely valuable as GPS units cannot esti- 
mate a player’s location accurately enough to be used for any spatial data based tactical 



 2.2 Team and Player Performance Analysis in Sport 

13 

 

 

 
 

analyses. Unlike wearable technologies, the availability of high quality event level data 
is much more varied between sports. In those sports where computer vision technolo- 
gies have been employed, there is excellent data availability in the quality and quantity 
required to perform advanced modelling techniques such as deep learning (Decroos et al., 
2019;Fern ández et al.,2021) or deep reinforcement learning (Liu and Schulte,2018; 
Routley and Schulte,2015). In these sports where there is high data availability, some 
lower quality data has been made publicly available (Pappalardo et al.,2019), which has 
likely increased researchers’ interest and boosted research in the sport. However, in sports 
where event level data is limited to human annotation, the data availability is consider- 
ably reduced and the analyses conducted are much more limited (Croft et al.,2017;Irvine 
and Kennedy,2017;Parmar et al.,2018). Furthermore, with limited data available, data 
providers do not release their proprietary data freely so research within the sport is not as 
common because the data is less freely available. 

 
2.2 Team and Player Performance Analysis in Sport 

The two most important elements of tactical analyses within sport are understanding team 
performances and understanding player performances. Team performances can be mea- 
sured in many ways (e.g. Did the team win it’s match? Did the team score more tries 
than the opposition? Did the team complete more passes or tackles than the opposition?) 
but usually analyses of team performances are used to provide an underlying understand- 
ing of how well the team met its objectives across a set period of time (e.g. a match or 
season), without considering match results. Evaluating team performances can be used 
in many ways within sport including: identifying key performance indicators for teams; 
understanding key sequences of play for a given team; and evaluating likely areas on the 
pitch through which a team may create value. All three of these elements can provide sig- 
nificant tactical understanding as coaches attempt to improve their own teams and prepare 
strategies to beat opposition teams. Player performances refer to how much the actions 
completed by a player contributed to improving a team’s performance. Player perfor- 
mances can be measured using standard count data (e.g. number of passes made, number 
of try assists) or using some form of value metric (e.g. actual goals vs. expected goals 
scored). Evaluating player performances can help a coach to understand whether a player 
is producing an output that is good or bad value for the cost of their salary. It can also 
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help to identify transfer targets (i.e. players who may perform better than those currently 
at the club). 

Although one of the earliest examples of analysing team tactical performances was 
in football (Hughes,1990), the underlying idea of utilising statistical analysis to evalu- 
ate player performances was popularised by the Oakland Raiders baseball team in Major 
League Baseball in the early 2000s (Lewis,2003). Their ’Sabermetrics’ approach allowed 
them to far exceed the performance their budget should have provided by using analytics 
to understand underrated players. They did this by redefining the elements of player per- 
formances perceived to be valuable. For example, rather than considering hit percentages 
(Equation2.1) as the best measure of batting performance, they instead considered on- 
base percentage (Equation2.2). Their reasoning for this was that running around bases is 
how a team wins matches and this can be achieved in more ways than just hitting the ball. 
Similarly, hitting the ball does not necessarily lead to reaching any given base. Equations 
2.1and2.2can be defined as 

Hit% = 
 Hits 

, (2.1) 
At-bats 

where an at-bat is a player’s turn to bat, and the total number of both hits and at-bats are 
used; and 

On-Base% = 
 Hits + Bases on balls + Hit by pitch , (2.2) 
At-bats + Bases on balls + Hit by pitch + Sacrifice flies 

where bases on balls refers to a batter being awarded a walk to first base due to poor 
pitching, hit by pitch is another situation where a batter is awarded a walk to first base 
and sacrifice flies refer to a batter hitting the ball in such a way that his chances of scoring 
are diminished markedly, but a team-mate (usually on third base) has an enormously 
improved chance of scoring. The total number of all measures is used. 

 
2.2.1 Accumulated Count Data Analysis in Team Sports 

Following the success of the Oakland Raiders, other sports have conducted similar anal- 
yses using accumulated count measures in an attempt to evaluate player and team per- 
formances. Accumulated count measures refer to counts of match actions, which are 
accumulated over a specific time period (usually a match) and are used to provide key 
performance indicators for coaches. These performance indicators can be used as bench- 
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marks through which coaches evaluate changes to their tactical strategies (Herold et al., 
2021). 

Puente et al.(2015) used season accumulated basketball statistics to identify perfor- 
mance indicators for teams who made the playoffs in the Spanish Basketball League. 
They used 10 seasons of Spanish Basketball League data between 2003 and 2013, includ- 
ing a total of 3,060 basketball games. The data were preprocessed so that game-related 
statistics were accumulated at the season level (i.e. total counts of each statistic for each 
season were used). The final league ranking of the team and the number of wins within 
the season were also identified. Pearson correlation (Rodgers and Nicewander,1988) was 
used to assess the association between game-related statistics and the number of wins dur- 
ing the regular season. Multiple regression analysis (Jobson,1991) was used to provide a 
model explaining the number of in season wins using the variables identified as significant 
via the univariate Pearson correlation. One Way ANOVA (Fisher,1925) was used to eval- 
uate whether there was a significant difference in game related statistics between playoff 
and non-playoff teams. The authors showed that the combination of all three forms of 
shooting accuracy (2 point, 3 point and free throw) accounted for 26% of the variance in 
the multiple regression model, with rebounds accounting for a further 23%. In total, the 
model accounted for 76% of the total variance in the number of wins achieved during a 
regular basketball season. Similar results were shown by the one way ANOVA, which 
indicated that 2 and 3 point, but not free throw, shooting accuracy were significant differ- 
entiators between those teams who did and did not reach the end of season championship 
playoffs. The results quantify the importance of having accurate shooters and proficient 
rebounders within a basketball team in the Spanish Basketball League and so could be 
used as a bench marking method by coaches when considering transfer targets. 

Harrop and Nevill(2014) used match accumulated football statistics to identify team 
performance indicators with respect to winning football matches in League One (the third 
tier of English football). They used 46 matches from the same team in the 2012/13 season. 
No preprocessing was required as the raw match counts of several attacking and defensive 
variables were used, alongside the fixture outcome (win, loss or draw). Binary logistic 
regression (Menard,2009) (win vs loss and win vs draw in separate models) was used 
to identify those performance indicators important to winning matches. The results indi- 
cated that completing fewer passes in total (P=0.006, odds ratio(OR)=0.972) and having 
a higher percentage of successful passes (P=0.042, OR=1.243), were significantly related 



 2.2 Team and Player Performance Analysis in Sport 

16 

 

 

 
 

to match winning performances. Attempting more shots (P=0.027, OR=1.296) and fewer 
dribbles (P=0.018, OR=0.695) were also significant factors in the model, which correctly 
classified the result of 71.7% of in sample matches. No out of sample analysis was con- 
ducted. The results provide important bench marking information for the club in question, 
which their coach could use to understand their underlying performances but the applica- 
bility to all teams within the league is limited due to the single club sample used. 

Woods(2016) used season accumulated Australian Rules football statistics to iden- 
tify team performance indicators relevant to the team’s final league position. He used 
195 matches from the 2015 Australian Football League season. During preprocessing, 
the match counts of 12 performance indicators were summed to provide a season count 
for each performance indicator. Cumulative link mixed models (Hedeker and Gibbons, 
1994) were used to evaluate the relationship between performance indicators and end of 
season league position. The results indicated that three performance indicators were as- 
sociated with final league position: clearances (P=0.002, β=-0.032); hit-outs (P<0.001; 
β=-0.034); and inside 50m (P=0.012, β=-0.020). The negative associations for all three 
variables indicated that greater counts were indicative of a better final league position. 
The results provide a bench mark for performances that coaches may wish to use; how- 
ever the violin plots provided by the author in the study (Figure2.1) show the difficulty 
with using any kind of accumulated count measure as a performance indicator due to the 
wide variability inherent within these counts on a match by match basis. 

Robertson et al.(2016) used match accumulated Australian Rules football statistics to 
evaluate the influence of individual player performances on match outcomes. They used 
198 games from the 2014 Australian Football League season. The data were preprocessed 
by transforming the match accumulated player statistics for 13 performance indicators 
into percentages of the team’s overall match count for the respective performance indi- 
cator. These percentages were then used as ordered weights for each player so fourteen 
features were included for each performance indicator based on percentile ranks of the or- 
dered weights. That is, the percentile ranks described the proportion of the team’s overall 
performance indicator count accounted for by the relevant player. Generalised estimating 
equations (Hardin and Hilbe,2003) were used to describe the relationship between match 
outcome and the feature set of performance indicators. The authors used 10-fold cross 
validation with a random selection of 33% of the data; they did not specify whether this 
was an in or out of sample validation. The results showed that five performance indica- 
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Figure 2.1: Woods(2016) violin plot of performance indicators significantly associated 
with final league position. Model was completed using season accumulated counts, dots 
in this plot represent match accumulated counts and show the variability inherent within 
the use of accumulated match counts on a match by match basis. League position is 
denoted in alphabetical order (e.g. A = 1st, B = 2nd etc). 

 
 

tors were significantly related to match outcome at different percentile ranks: marks (25th 
percentile); disposal (25th and 50th percentile); goals (75th, 90th and 95th percentile); be- 
hinds (90th percentile); and inside 50s (95th percentile). The model correctly classified 
the match outcome with 63.9 ± 4.2% accuracy. The results provide a novel approach to 
understanding the distribution of player contributions to match outcome, suggesting that 
the more evenly spread the goal scorers are and the more disposals (total count of kicks 
and handballs) the lower percentile players perform, the greater the team’s chance of win- 
ning. Information of this nature could be used to provide an understanding of squad depth 
and positions/areas through which recruitment teams may wish to target new players. 

Whitaker et al.(2021) used match accumulated football statistics to infer the abilities 
of football players in the Premier League, working under the assumption that players 
involved in a higher quantity of actions are better at those actions (i.e. a player who passes 
more in a match is a better passer). Their data set included 1.2 million actions from the 
2013/14 - 2014/15 seasons of the English Premier League. Match accumulated counts of 
actions, including passes and shots, were calculated for each player during preprocessing. 
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Figure 2.2: Whitaker et al.(2021) posterior plot of goal abilities (i.e. those actions 
attempting to score goals) for Sturridge and Reed. 

 
 

Also produced were a dichotomous home/away variable, identifying the location of the 
match, and a variable denoting the fraction of time played by the player. A Bayesian 
model following a Poisson distribution was utilised to consider latent player abilities, 
while accounting for the player and opponent teams’ influence on typical match action 
counts. A variational inference approach was used to estimate the model parameters. The 
authors showed how increased playing time could help shift parameter estimates away 
from the mean level, and provided player rankings for two categories of actions: Goal 
(goal actions) and GoalStop (actions attempting to stop a goal). Figure2.2is taken from 
Whitaker et al.(2021) and shows two different player’s goal abilities. It shows how the 
model is much more certain about the positive ability of Sturridge with respect to scoring 
goals because he is involved in more goal scoring actions. Conversely, there is much 
greater uncertainty surrounding Reed’s scoring ability as he is involved in much fewer 
goal actions. Although the underlying assumption of the model that players involved in 
more actions are better at those actions is open to debate, the results of the study provide 
a novel methodology through which players can be rated and the certainty with which 
they are rated. This information could be used by coaches and scouts to evaluate their 
players with much greater detail than previously considered within the literature, where 
mean point estimates are typically considered. In sports with low data availability, such 
as rugby league, this Bayesian approach could also allow the uncertainty caused by low 
data availability to be estimated providing an appropriate method through which player 
and team performances could be evaluated. 
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2.2.2 Action by Action Data Analysis in Team Sports 

The use of accumulated count data to evaluate player and team performances in sports is 
useful to the extent that it provides a range of key performance indicators through which 
match or season performances can be compared. Furthermore, it provides a bench mark 
through which coaches can evaluate tactical changes or player recruitment. However, the 
information provided to coaches is limited by the nature of accumulated count measures, 
which don’t consider the context surrounding each action individually. They are therefore 
unable to provide a true indication of the value of an action being taken, or the probability 

of its success. For example, in football, a pass to a team mate in the opposition half is 
more likely to result in a goal than a pass to a team mate in the possession team’s own 

half but a pass to an unmarked team mate in the opposition half is more likely to result in 
a goal than a pass to a marked team mate. Similarly, a pass to a team mate in the centre 
of the penalty area is more likely to result in a goal than a pass to a team mate wide on 

the pitch, but is also more likely to be unsuccessful. This information is not considered 
in accumulated count data analyses which, until recently, was a barrier to the widespread 
usage of advanced statistical analyses to rate player and team performances in team sports. 

The recent introduction of action by action data, which provides spatial information 
for every action taking place on the pitch has changed the focus of research towards the 
development of more advanced statistical analyses to evaluate player and team perfor- 
mances. However, such data is only readily available in a limited number of sports. This 
section considers two types of these analyses: spatial trends analyses, which attempt to 
understand the pitch as a probability density function of where the player or team could 
pass or control the ball; and expected possession value (EPV) models, which provide a 
value for every location on the pitch based on the probability that a positive or negative 
scoring action will occur within a predefined period of time. 

 
2.2.2.1 Spatial Trends Analysis in Team Sports 

Despite its importance and ability to directly influence the decisions that players and 
coaches make, literature surrounding spatial trends analyses (Definition2.2.1) is sur- 
prisingly sparse. In football, two studies have considered the concept of pitch control 
(Fernández and Bornn,2018;Spearman et al.,2017). Pitch control can be defined as 
the degree or probability of control that a given player (or team) has on any specific 
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position/location in the available playing area (Fernández and Bornn,2018). In Amer- 
ican football, individual player pass location distributions have also been considered 
(Mallepalle et al.,2020) as a form of spatial trends analysis. To the authors knowledge, 
no other studies have been conducted in sport specifically considering the pitch as a prob- 
ability density function to evaluate the spatial trends of player or team performances. 

Definition 2.2.1. Spatial trends analyses estimate the probability that a team will control 
the ball in a given location or where a player or team is likely to pass the ball. 

Spearman et al.(2017) adopted a physics-based approach to evaluating pitch control 
using match events and player tracking data from 38 matches played by a single club in 
the Premier League in the 2015/16 season. During preprocessing, the authors identified 
10,875 passes to be used within the training and testing of their model. For each pass, the 
authors compute the ball’s trajectory (i.e where the ball travelled), the time-to-intercept 
for each player for every location on the pitch (i.e. how long it would take a player to 
reach that location) and the time-to-control (i.e. the probability that a player can control 
the ball given how long he will be in its vicinity). A Bayesian model was used to estimate 
the probability of a pass being successful for every location on the pitch. The model 
had an overall accuracy of 80.5% when predicting pass success or failure and 67.9% 
when predicting the specific receiving player. A pitch control plot fromSpearman et al. 
(2017) is shown in Figure2.3. The plot shows areas of control for each team on the left, 
identifying where the player in control of the ball may have wished to pass the ball. On 
the right, it shows the area of pitch control for a single player (blue number 7) as a dark 
shaded area. 

Fernández and Bornn(2018) evaluated pitch control using only player tracking data 
in football. Their approach used 2.4 million examples from 20 Spanish First and Second 
Division matches. During preprocessing, they extracted the x, y player location coordi- 
nates, speed and direction of movement, as well as their distance from the ball at a frame 
by frame level. Player influence areas were defined using a bivariate normal distribution, 
which accounted for the speed and direction of movement of the player. The influence 
area was scaled by the distance of the player to the ball so that players further away from 
the ball had less influence than those close to it. These areas were summed for each 
location at a team level to identify the overall team pitch control for the possession or 
opposition team. As only tracking data was used, no accuracy metrics were provided, but 
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Figure 2.3: Spearman et al.(2017) pitch control probability plot. On the left, blue regions 
are those controlled by the team in possession of the ball, red regions are controlled by 
the opposition team. White areas are contested (i.e. not controlled by either team). On 
the right, the shaded region represents the area of the pitch controlled by blue number 7. 
The trail behind every player, the ball represents their position over the past 3 seconds. 

 
 

the authors did show how the model could be used to evaluate the space gained or lost 
through player movements. Figure2.4provides a plot showing this usage. 

Both studies considering pitch control (Fernández and Bornn,2018;Spearman et al., 
2017) provide extremely valuable insights into the concept of space occupation on a foot- 
ball pitch. They provide methods through which each pass or run can be valued with 
respect to its ability to generate space and compared to other options the player may have 
had. They also allow for the possibility that player profiles can be generated based on how 
risky the passes they make are. However, the ability to implement the models in rugby 
league is limited for two reasons. First, data availability - there is no tracking data avail- 
able in rugby league. Second, and perhaps more importantly, the rules of rugby league 
limit the usefulness of this method. In rugby league, the ball can only move forwards 
through either a run or a kick. If the ball is thrown (the most common passing method), 
it must move backwards. Furthermore, defending players are almost always in front of 
attacking players, so when an attacking player throws the ball backwards, there is usually 
very little chance of it being intercepted by the defending player. As such, the pitch con- 
trol model would mostly only be useful in rugby league when considering kick passes, 
which occur approximately 20 times less frequently than passes. 

Away from the concept of pitch control,Mallepalle et al.(2020) also considered the 
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Figure 2.4: Fernández and Bornn(2018) pitch control plot. In the left frame, a player 
moves backwards from the 18 yard line to occupy a space of value with higher control. 
In the middle frame, the player attacks a space in front of him, dragging three defenders 
towards him. In the third frame, the green circled player is free because of the movement 
in the middle frame. The player on the 18 yard line makes a forward run into space so he 
can receive a crossed pass. 

 
 

pitch as a probability density function by calculating the pass location probability distri- 
bution of quarterbacks in American football. The authors used 27,171 quarterback passes 
from the 2017 and 2018 National Football League seasons. The data used was already 
centred at the line of scrimmage and so the only preprocessing required was to limit the 
pitch to 10m behind the line of scrimmage and 55m infront of it. The authors used ker- 
nel density estimation (KDE;Rosenblatt(1956)) to provide a smooth passing probability 
surface and generalised additive models (Hastie and Tibshirani,1986) to estimate the 
probability of the pass being successful. As a purely observational study, no accuracy 
figures were reported. The authors showed how the KDE can be used to identify passing 
trends at a player or team level and how the generalised additive models can be used to 
evaluate players’ or teams’ completion rates compared to the league average. Figure2.5 
shows these comparisons for two quarterbacks. The left column shows the player’s KDE, 
whereas the player’s predicted completion probability surface is shown on the right. The 
idea of utilising KDEs to establish the spatial trends of player performances is unlikely 
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Figure 2.5: Mallepalle et al.(2020) quarterback KDE plot (left) and pass completion 
probability surface (right). 

 
 

to work particularly well in rugby league given the wide variety of areas from which a 
player could receive the ball, which differs from the quarterback who always receives the 
ball in the centre of the pitch. However, there is significant potential to use the method 
to try and understand the spatial trends of team attacking performances, which may help 
reveal tendencies to move the ball in certain areas of the pitch. Surprisingly, no study 
has attempted this form of analysis at a team level in any sport so there is scope for its 
consideration within rugby league. 
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2.2.2.2 Expected Possession Value Models in Team Sports 

Identifying the spatial trends of player and team performances provides an interesting, 
useful and visually appealing representation of the tactical strategies of players or teams 
as it evaluates the locations on a pitch they are likely to try and control or move the ball. 
However, the key limitation of these spatial trends analyses is that the pitch is treated as 
a uniform entity where players and teams are equally likely to wish to move the ball in 
any direction. In invasion team sports, such as basketball, football and rugby, where the 
opposition scoring area is at one end of the pitch, this is not the case as most movements 
made by a team are aimed at progressing towards the scoring area. Those areas closer to 
the opposition scoring area are therefore intrinsically of higher value as a team is more 
likely to score points/goals the closer they get to the scoring area. 

The concept of EPV was introduced byCervone et al.(2016) in basketball to quantify 
the value of controlling the ball in any location on the pitch (Definition2.2.2). Unlike 
spatial trends analyses, EPV has received significant attention within the sports analytics 
literature and has since been adapted to football (Decroos et al.,2019;Fern ández et al., 
2021;Singh,n.d.) and ice hockey (Liu and Schulte,2018;Routley and Schulte,2015), 
amongst other sports (Bukiet et al.,1997;Chan et al.,2021). However, the name of the 
measure, the method used to calculate it and its subsequent usefulness to decision making 
in sports is highly variable. Broadly, four methods have been used to analyse EPV models: 
deep learning approaches; Markovian approaches (e.g. reinforcement learning); machine 
learning approaches (e.g. CatBoost algorithms); and Bayesian analysis. 

Definition 2.2.2. EPV provides an instantaneous snapshot of the possession’s value (Cer- 
vone et al.,2016). This value is typically measured in terms of the probability of scoring 
goals/points conditional on the location. 

Cervone et al.(2016) used tracking and event level data to produce an EPV model in 
basketball. The model analysed over 1 billion space-time observations from the 2013/14 
NBA season. The data provided to the authors for analysis were pre-processed to iden- 
tify the player in possession of the ball, their speed and acceleration, whether they were 
defended by the opposition at that time point and the court zone they were in. The au- 
thors produced a multi-resolution stochastic model following semi-Markovian principles, 
which allowed movements of the ball (i.e. match events) and movements of players (i.e. 
tracking data) to be analysed together with respect to their impact on EPV. In order to 
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make the model computationally tractable, player data was grouped together using player 
similarity matrices, allowing the authors to share spatial information regarding action 
preferences between players within their model. The model was able to provide an EPV 
for every action or movement on the court. Figure2.6visualises this process, showing the 
changes in EPV that occur during a passage of play. The authors showed how the model 
could be used to rate player performances using an EPV-added estimate, which compared 
the EPV when the player received the ball to the EPV when the player had completed an 
action or lost the ball. They used this to provide a ranking for the best and worst players 
in the 2013/14 season. The model provided a comprehensive introduction to the concept 
of EPV, with elements which would work in rugby league (e.g. adopting Markovian prin- 
ciples to value multiple point scoring actions at the end of the possession with a single 
number). However, data availability issues in rugby league make it difficult to implement 
the model directly in the sport (no tracking data is available in rugby league). Further- 
more, the method through which the EPV remains constant while an action takes place is 
not suited to rugby league. Whereas in basketball this works because actions (e.g. passes 
or shots) are typically less than 1 second in duration, in rugby league kick action can fre- 
quently take 3-5 seconds as a team attempts to gain territory. Consequently, holding the 
EPV constant for this duration of time, while the ball and players progress as far as 60 
metres down the pitch is inappropriate for the requirements of rugby league. 

Fernández et al.(2021) produced a comprehensive deep learning EPV model in foot- 
ball. They used 633 English Premier League matches, which took place between the 
2013/14 and 2014/15 seasons. A significant amount of preprocessing was used to convert 
the x, y player location co-ordinates and match event level data into appropriate features 
for their model. Rather than solely providing the model with the player’s coordinates on 
the pitch, information such as the distance and angle to the opposition goal was included, 
alongside the player’s location relative to the ball. Furthermore, contextual information 
was included, for example the player’s pitch control (i.e. the probability they would con- 
trol the ball if it was moved to a given location), the pressure lines of the opponent (i.e. 
information about their formation) and the number of players who would be outplayed if 
the ball was moved to a given location. The authors employed a ‘decomposed Markov De- 
cision Process (MDP)’ approach, which allowed them to individually model each element 
of the sport (pass, kick and run) using the features most relevant to the action specified - 
such an approach would not be possible if modelling via MDP or reinforcement learning 
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Figure 2.6: Cervone et al.(2016) EPV plot for a sample possession. Immediate, rapid 
changes are caused by actions such as passes and shots. Smaller, more incremental 
changes in EPV are induced by changes in players’ locations. The black line slightly 
smooths the EPV evaluations at each time point (grey dots). 

 
 

as the value of all actions is estimated together within that framework. Machine learn- 
ing methodologies appropriate to the decomposed question were used: logistic regression 
was used to identify pass and turnover probabilities; action likelihoods used convolutional 
neural networks built on the pitch control model (Fernández and Bornn,2018) described 
in Section2.2.2.1; and pass and ball drive expectations were calculated using deep neural 
networks. Figure2.7provides a sample of the model’s usage. 

The authors provide multiple applications for the model. They use an EPV added es- 
timate similar to that employed byCervone et al.(2016) but extend the model to consider 
the EPV added when passing to a different players (Figure2.8). They also discuss how 
the model can be used to evaluate the EPV generated by teams in different formations 
against a specific opponent, providing insights into how to prepare strategies against an 
opposition team (Figure2.9). The work ofFern ández et al.(2021) provides an excellent 
gold standard approach to the use of deep learning within sport as it breaks down different 
elements of football to gain incredible insights into the sport at both a player and team 
level. In its current guise it isn’t suitable for use in rugby league, as it utilises a binary 
outcome measure (goal/no goal) whereas in rugby league there are 5 possible possession 
outcome, but adapting the model to this scoring difference would not prove difficult. A 



 2.2 Team and Player Performance Analysis in Sport 

27 

 

 

 
 

 
 

Figure 2.7: Plot outlining the decomposed MDP methodology employed byFern ández 
et al.(2019,2021). Figure taken fromFern ández et al.(2019). EPV plot highlights three 
specific situations (A, B and C). Blue areas represent areas of low EPV, red areas represent 
high EPV. Blue arrows represent pass chosen by the player, green arrows represent best 
possible pass according to the model. Yellow dots represent players on the attacking team 
(i.e. in possession), blue dots represent defending team. 

 
 

larger issue is the quantity and quality of data required to produce the models, which isn’t 
available in rugby league where there is no tracking data available of any type and action 
by action location data has only been available for two seasons (totalling 201 matches). 
As such, although the work ofFern ández et al.(2021) is a gold standard to aspire to, it is 
not possible to reproduce in rugby league with the current state of data availability. 

Decroos et al.(2019) valuing actions by estimating probabilities (VAEP) framework 
provides an alternative method through which football actions can be evaluated, using 
match event data only. The authors used 11,565 matches from five top European football 
leagues between 2012-2018 (totalling 14.4 million actions). The data were preprocessed 
to provide model features related to the previous 3 actions. These features were grouped 
into descriptive features (e.g. type of action, location of action, body part used and action 
result), complex features (e.g. the distance and angle to the goal and the distance covered 
during the action in x and y directions) and game context features (e.g. number of goals 
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Figure 2.8: Fernández et al.(2021) evaluation of single player’s EPV added when passing 
(left) and receiving (right) passes from different players. Plot shows probability of passes 
being selected by size of player circle and value of pass through the arrow size and colour. 
Metrics are normalised by the minutes the two players played together and multiplied by 
90 minutes to provide a match value. 

 
 

scored by the player’s team and opponent in the game after a specific action). A CatBoost 
algorithm was used to evaluate the probability of scoring and conceding within the next 
10 actions in separate models. The results were not visualised on a pitch due to the 
context features involved, but the authors showed how the model could be used to identify 
potentially undervalued player. Furthermore, they showed how the model could be used 
to provide a deeper understanding of players’ ability to provide value through the different 
actions they attempt (Figure2.10). 

Recently, the model has been extended to show how the VAEP framework can be 
used to provide player ratings based on the pressure experienced by a player within a 
game state by manipulating the context features (Bransen et al.,2019) and to provide an 
understanding of the chemistry between players on the same team, where chemistry is 
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Figure 2.9: Fernández et al.(2021) plot identifying the EPV generated by teams in dif- 
ferent formations against a specific team. The green circle represents the ball location. 

 
 

 

Figure 2.10: Decroos et al.(2019) plot of VAEP for different actions. Plot shows an 
overview of the total contribution per 90 minutes for different types of actions for different 
players in the 2016/17 (a) and 2017/18 (b) seasons. 

 
 

defined as the joint-value generated between two players (Bransen and Haaren,2020). 
Figure2.11depicts an attacking chemistry plot provided byBransen and Haaren(2020). 
The VAEP is an interesting approach, which accounts for a wide variety of action details, 
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Figure 2.11: Bransen and Haaren(2020) joint chemistry plot showing value generated 
between pairs of players on the same team. Green lines represent high attacking chemistry 
links, dark red lines reflect low attacking chemistry links. 

 
 

including the context of the match. These context features could provide interesting in- 
sight if used within rugby league. However, in the model’s current form, it would require 
an impractical eight models to be calculated based on the points which can be scored in 
rugby league: two each for converted try; unconverted try; penalty goal and drop goal 
(one for the possession team and one for the opposition team). Furthermore, the amount 
data used by the authors to calculate this model was more than 10 times greater than that 
available in rugby league, limiting the ability to replicate the method in the sport. 

Routley and Schulte(2015) utilised a Markov Game model (Shapley,1953) approach 
to determine the value of each action within an ice hockey match by estimating its con- 
tribution to the probability of either team scoring the next goal or conceding the next 
penalty. They used 2.8 million actions from the 2006/07 NHL season. In order to con- 
vert the event level data into an MDP framework, a significant amount of preprocessing 
occurred. Episodes were defined as the period of match play between goals, penalties or 
stoppages and were described by three contextual features (goal differential, manpower 
(i.e. number of players on each team) differential and period of match). Eight actions 
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Figure 2.12: Routley and Schulte(2015) box plot of action impact values across different 
contexts. Left shows the action impact values for goals, where a high value is better for 
the team. Right shows the action impact values for penalties, where a high value is worse 
for the team. Central mark of the box plot is the median, the edges represent the 25th and 
75th percentiles and the whiskers are at approximately 2.7 standard deviations. 

 
 

were isolated and provided with two markers (the team performing the action and the 
zone in which it occurred). A state was then described by the contextual features and a 
playing history (i.e. each action that took place within the game state). Consequently, 
each state essentially played the role of an episode within their model, as all the actions 
taken within the episode were described in the state. A reward of 1 was provided when a 
goal was scored or a penalty was received. The authors used dynamic programming via 
the value iteration algorithm to calculate the values of different actions within the model. 
They then produced box plots of action impact values (Figure2.12) to show their variation 
across different contexts. Players were rated by comparing the action impact value of the 
action taken by a player to the state value. The Markov Game approach used byRoutley 
and Schulte(2015) is not suitable for rugby league because a tackle by the opposition 
team does not mean they will receive possession of the ball. However, as withDecroos 
et al.(2019), the use of context nodes to identify match situation and value player actions 
is a particularly interesting concept, which could be used within rugby league. 

Liu and Schulte(2018) advanced the work ofRoutley and Schulte(2015) in ice hockey 
by using a deep reinforcement learning algorithm (Sutton and Barto,2018) to learn the 
model’s action values. They used 3.3 million actions from the 2015/16 NHL season. 
A similar, but more comprehensive, set of features toRoutley and Schulte(2015) was 
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produced during preprocessing. The reinforcement learning approach allowed thirteen 
actions to be considered (rather than eight), alongside ten features (including continuous 
x and y co-ordinates, rather than zones, an infinite score differential (rather than -8 to +8 
values) and other elements such as the angle between the puck and goal and the velocity 
of the puck). Unlike their previous work, the authors focused solely on goals scored/- 
conceded for their rewards in this study, with 1, 0 or -1 being the reward for the home, 
neither or away team scoring. Episodes were defined as starting at the beginning of the 
game or immediately after a goal and finished with a goal or the end of the game. To 
estimate the action values, the authors used a long-short term memory neural network. 
The Sarsa on-policy temporal difference prediction method was used to train the neural 
network weights. A goal impact metric was calculated for players and correlated well 
with success measures currently used in ice hockey (e.g. goals and assists). The authors 
also showed how the model could be correlated with current salaries to identify players 
who produced the best (or worst) value for the money they are paid. The study provides 
an informative model, but cannot be applied to rugby league due to the data availability 
and Markov Game application issues described above. 

Liu et al.(2020) adopted a more advanced model free deep reinforcement learning 
approach with their work in football. Their model learnt from 4.6 million actions across 
ten European leagues from the 2017/18 season. The data was preprocessed to provide a 
similar set of features toLiu and Schulte(2018), however continuous features were used 
rather than zones for location information, to allow the model to generalise findings to 
areas of the pitch not visited in the training process. The states were again composed of 
this set of features and an action history. The reward used was also the same as previously 
(+1 for home goal, -1 for away goal, 0 for no goal). Rather than solving the model as a 
single agent, the authors employed a two-tower design (one for the home team and one 
for the away team) to generate the action values. This allowed them to fit the data of the 
home and away teams separately. Each tower used a long short-term memory neural net- 
work, whose weights were trained via the Sarsa temporal difference prediction method. 
Figure2.13provides a plot of different action values across the pitch, some of which may 
not have been visited in the training process. The authors created a goal impact rating, 
similar to their work in ice hockey (Liu and Schulte,2018), to rank player performances 
and showed that it correlated well with future performances at a global level but required 
fine tuning when attempting to generalise to a single league (e.g. performances at the 
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Figure 2.13: Liu et al.(2020) action values for four different actions (shot, pass, cross 
and tackle) across the pitch. 

 
 

Championship level were poorly correlated with the global model). The model provides 
an extensive set of useful results and the two-tower design employed in the training pro- 
cess ensures that it could be possible to apply the methods to a rugby league environment. 
Unfortunately data availability issues within rugby league ensure that this is not currently 
possible. 

Singh(n.d.) utilised Markovian principles (Howard,1971) to provide EPV values for 
a set of 192 zones across a football pitch, which he called ”expected threat” (xT). He 
used match event data from the 2017/18 English Premier League season. The data were 
preprocessed so that only the zone for the action and its descriptor from the set of ”move” 
(i.e. run with ball or pass) or ”shoot” were considered. The only reward utilised was a goal 
being scored, valued as 1. Dynamic programming (Bellman,1954) was used to iteratively 
evaluate the xT for each zone, starting with a value of 0 for all zones. The author provided 
a heat map style interactive plot of the completed model (Figure2.14) and showed how the 
values could be used to identify threatening players by taking the difference in the team’s 
expected threat before and after the player performed an action. Similarly, he showed 
how it could be used to evaluate the locations through which teams generated value and 
whether this occurred via passing or shooting in an interactive plot for the purposes of 
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Figure 2.14: Singh(n.d.) xT plot 
 
 

future tactical preparations. Although the xT model provides interesting insights into 
player and team performances, it is not clear whether the zones used were empirically 
or arbitrarily chosen. Similarly, the dynamic programming approach requires a complete 
specification of the transition matrix, which may not be computationally feasible if more 
than two actions are evaluated. However, the study provides a baseline approach, which 
could be adapted to the needs of rugby league. 

Merhej et al.(2021) extended the work ofSingh(n.d.) by using deep learning to eval- 
uate defensive actions using only event level football data. They used 760 matches from 
2 seasons of English Premier League football data (2017-2019). First, they preprocessed 
their data and produced an xT model specific to their data, following the previously pub- 
lished methodology (Singh,n.d.). Next, the authors produced a simple feature dataset of 
two previous actions, providing their x and y co-ordinates and their xT value. A multi- 
layer perceptron model was used to predict the xT, which an action would have achieved 
if a tackle or interception had not been made by the opposition. The authors showed how 
these predicted xTs could be used to value individual players’ defensive performances by 
summing them and normalising to a 0-100 score. The study provides a practical method 
through which defensive actions can be evaluated and only requires event level data. How- 
ever, it relies on a version of an EPV or xT model, which can be applied to player perfor- 
mances. Such a model is not currently available within rugby league, so it will need to be 
developed before the concepts of this study can be applied to the sport. 

Chan et al.(2021) adopted a Markov Reward Process approach to evaluate team 
performances in American football. They used play-by-play data from the 2013/14 to 
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2016/17 National Football League seasons, totalling 164,299 plays. During preprocess- 
ing, the authors extracted the yard line and down to form the state space and the next 
play’s down and yard line for the transition matrix estimation. Four rewards were calcu- 
lated from the perspective of the attacking team: field goal (3 points); safety (-2 points); 
touchdown (6.97 points); and opposition scoring turnover touchdown (-6.97 points). Dy- 
namic programming was used to estimate the transition matrix and solve the Markov 
Reward Process. A points gained metric was identified as the difference in value between 
the beginning and end of the play. It was used to evaluate team performances and different 
play types. The results showed that better teams performed better in the middle of the field 
and were able to use short pass plays more effectively than worse teams. Although only 
using data at a play by play rather than at the action by action level, the methodology em- 
ployed byChan et al.(2021) can be directly related to a rugby league environment: rather 
than four downs, rugby league would use six plays; and rather than the rewards used in 
this study, rugby league would use the five possession outcomes (no try, converted try, 
unconverted try, penalty goal and drop goal). Unlike American football though, a play 
can begin anywhere across the pitch in rugby league so rather than only considering the 
distance from the opposition try line, rugby league would have to create zones, which also 
consider how central or wide on the pitch the play begins. 

 
2.3 Rugby League 

2.3.1 Overview 

Rugby League is a field-based collision sport, where 13 players on each team attempt 
to score more points than the opposition in a match played across two 40 minute halves. 
Matches are played on a pitch with dimensions 68m x 120m. The end 10m at both ends of 
the y-axis are designated as try areas, where the highest value points are scored. Conse- 
quently, few actions occur in the opposition try area when a team is attacking because as 
soon as the attacking team is in control of the ball in this area, they will attempt to ground 
it for a try. Figure2.15provides a representation of the rugby league pitch. The try lines 
represent the beginning of the try areas, which extend to the end of the pitch. On each try 
line there is a 6m wide goal. Teams are able to score points if they kick the ball over this 
goal for either a drop goal, penalty kick or conversion kick. At the beginning of a half of 
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Figure 2.15: Plot of 70m x 120m rugby league pitch. Assumes the team in possession 
of the ball is attacking in an upwards direction. Own refers to the possession team; Opp 
refers to the opposition team. 

 
 

match play or after a scoring action, play is restarted at the 50m line. The 20m line is an 
important visual signpost for players as it signifies a point where coaches typically want 
them to employ specific tactical strategies (e.g. set attacking or defensive plays to try and 
score or prevent points from being scored). 

There are four methods of scoring points in rugby league: a try, where the ball is 
grounded beyond the opposition try line; a conversion kick, which is attempted after every 
try and is successful when the ball is kicked from the floor between the goal posts; a 
penalty kick, which is also successful when the ball is kicked from the floor between the 
goal posts, but is offered as a result of an opposition foul rather than a try being scored; 
and a drop goal, which is successful when the ball is kicked between the goal posts from 
the attacking players hands. A converted try (try scored and conversion kick successful) 
is worth 6 points, an unconverted try (try scored, but conversion kick unsuccessful) is 
worth 4 points, a penalty goal is worth 2 points and a drop goal is worth 1 point. Table 
2.1outlines the potential possession outcomes in rugby league. If the teams have scored 
equal points after 80 minutes of match play, two additional periods of 5 minutes is played 



2.3 Rugby League 

37 

 

 

 
 

Table 2.1: Possession outcomes in rugby league 
 
 

Action Points Scored 
Converted try 6 

Unconverted try 4 
Penalty Goal 2 
Drop Goal 1 
No score 0 

 
 

to enable a ’golden point’ to be scored. A ’golden point’ is any point scoring event, which 
in this additional time wins the match for the team who scores it. 

Rugby league is a sport which follows an episodic pattern. The first action of any 
match is a kick from the halfway line. The successful receipt of this kick begins a phase 
of attacking possession for the ball catcher’s team and a phase of defensive possession 
for the kicker’s team. In an attacking possession, a team attempts to progress the ball 
as far as possible towards the opposition try line to increase their chances of scoring 
points. Conversely, in the defensive phase of possession, the defending team attempts to 
stop the progression of the opposition team towards their try line. Typically, an attacking 
possession consists of a set of six plays as per the rules of rugby league. A play begins 
when the ball is taken from the opposition (e.g. by catching one of their kicks) or when 
the ball is rolled between the attacking player’s legs after a tackle has been completed by 
the opposition (a play-the-ball). If a team is tackled for the sixth time within their set of 
six plays, the ball is handed to the defending team to begin their attacking set at the point 
where the tackle took place (a handover). Consequently, a team will normally kick the 
ball as far down the pitch as possible, or into the try area to try and score points, before 
the sixth tackle happens. In this situation, the defending team’s attacking possession 
begins at the point where they catch the ball. Throughout this thesis, the term attacking 
possession is used. An attacking possession can consist of multiple consecutive sets for 
the same team. Such a situation typically occurs when the defending team fouls the 
attacking team, resulting in a new set of six plays beginning for the attacking team. An 
attacking possession could therefore feasibly contain as many as 20, 30 or 40 plays (the 
equivalent of 3-7 full sets) if the opposition continuously fouls the attacking team before 
their attacking set ends. Combining the results of all the attacking possessions a team 
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Table 2.2: Possession terms used in this thesis, ordered from lowest level (i.e. a single 
action) to highest (i.e. all actions within a specified period of time). 

 
 

Term Description 
 

Action Any action performed on the pitch (e.g. pass, kick, run, foul). 
 

Play A sequence of actions, which ends when a player on the team is 
tackled. The number of actions in a play is unlimited but typically 
does not exceed 20 as a player is usually tackled before then. 

 
Set A group of up to six plays for the same team. There cannot be more 

than six plays in the same set, but a team can complete consecutive 
sets in the same possession if the opposition fouls them. 

 

Attacking 
Possession 

A sequence of actions, plays or sets through which a team is in 
possession of the ball. Typically this will be the same as a set, but 
in the case of an opposition team foul, an attacking possession can 
contain multiple sets. 

 

Attacking 
Performance 

All the attacking possessions a team produces during a specified 
period of time (e.g. a single match, multiple matches against the 
same opponent, or across the season). 

 

 
 

produces during a match can be considered a team’s attacking performance. Table2.2 
details the possession terms used in this study and their relationship with each other. 

From an attacking team perspective with a finite opportunity to score points per attack- 
ing possession, it is logical that teams will attempt to perform as many actions as possible 
with their best players, or perform as many actions as possible targeting the weaknesses 
of their opposition. Whilst such tactics provide attacking teams with the best opportu- 
nity to score points in matches, they also provide an opportunity for opposition teams 
to understand the tactical strategies a team may employ before the match based on their 
previous performances. Such information could be gleaned either from the proportion of 
actions occurring within a specific area, or zone, or the total/proportional value of actions 
completed within that zone. In practice, performance analysts do not currently obtain this 
information via data-driven processes. Instead, they watch videos of the opposition team’s 
previous performances prior to a match and evaluate their attacking performances subjec- 
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tively. This information is then relayed to the head coach who will produce a strategy to 
try and beat the opposition. This process is both subjective (and open to individual bias, 
which can have positive or negative results) and time consuming. Therefore, an objective, 
data-driven method of understanding team attacking performances in rugby league could 
be beneficial from the perspective of preparing tactical strategies to try and beat future 
opponents. 

Table2.3provides an overview of the roles and responsibilities of different players on 
the pitch (Dalton-Barron et al.,2022). In brief, there are three main elements to rugby 
league: gaining metres, scoring tries and linking play together. Props and second rows 
typically attempt to gain metres in their own half of the pitch to set up promising attacking 
positions for the team; centres, wingers and full backs attempt to score points by perform- 
ing the last actions of the team’s attacking plays and usually perform the first action after 
an opposition team has kicked the ball to counter attack; and the half pair and hooker link 
play together by playing the first actions at the beginning of most plays. With different 
roles and responsibilities, the players are evaluated at an individual level by coaches in 
different ways. For example, the main role of the hooker is to link play together, as such 
it wouldn’t be useful to rate these players based on the number of tackles they make or 
the number of tries they score. The ability to evaluate players is pivotal though as rugby 
league operates under a salary cap, which limits the amount of money teams can spend 
on player salaries. Therefore, in order to remain competitive, teams must always seek out 
either the best quality players in their position, or those who are most underrated in terms 
of their salary cost. 

To help coaches evaluate rugby league players, some basic performance indicators 
are provided by data providers (Opta,n.d.). These include number of tries scored, pass 
statistics (number of try assists and offloads), run statistics (number of carries, metres, 
tackle busts and clean breaks made, average metres gained per carry), kick statistics (num- 
ber of attacking kicks and forty-twenties made, drop goals and penalty/conversion goals 
scored, missed goals), defensive statistics (number of tackles made or missed) and error/- 
foul statistics (number of errors made, penalties conceded, red and yellow cards). Al- 
though useful, these elements are usually provided as accumulated counts across fixtures, 
opponents or seasons, which provide limited context surrounding the value of the actions 
completed with regards to how they benefit the team. For example, gaining 10 metres is 
much more valuable if you are 9m away from the opposition try line as it provides you 



2.3 Rugby League 

40 

 

 

 
 
 

Table 2.3: Rugby league player positions and their general responsibilities. Brackets 
represent number of players in that position on the pitch. 

 
 

Position Responsibility 
Full 

back 
The last line of defence, these players stand behind the other defend- 
ers and must chase down and tackle any attacking player who breaks 
through the first line of defence. In attack, they provide support runs in 
an attempt to create ’overloads’, which provide better opportunities for 
tries to be scored. 

Wingers Typically the widest players on the team. In defence, they must catch 
and return high balls kicked into their try area and defend their opposite 
winger in open play. They are expected to finish attacking moves by 
exploiting space generated for them and scoring tries in attack. 

Centres  This position is just inside the wingers and holds a very similar role. 
In defence, they defend their opposite centres and in attack they pose a 
threat in wide areas, but typically would provide an assist for a winger 
to score a try, rather than scoring themselves. They are less likely to 
catch a high ball in defence than wingers or full backs. 

Half pair The scrum-half and the stand-off, first and second-receivers of the ball 
at the start of a play. They are the playmakers of the team and are 
expected to direct their team-mates as to the tactics that are going to be 
used when the team is attacking. 

Hooker  Typically the player who gets the ball from a play-the-ball and passes it 
to the half-pair. They are similarly creative to the half-pair and have the 
opportunity to run with the ball when they receive it if they think it’s a 
better attacking option than passing. 

Props   Typically the biggest and heaviest players on the team, they tend to 
be used as ”battering rams” who run directly at the opposition to gain 
metres. This tactic is used particularly when the team is close to its own 
try line. Defensively, they attempt to stop their opposing prop gaining 
metres when they try the same tactic. 

Second 
Row 

 
 

Loose 
Forward 

Similar to the props, but placed wider on the pitch, these players work 
in conjunction with their centre and wing to try and make metres. De- 
fensively, they perform a larger number of tackles across a wider range 
of locations than other players. 
A more free position, which varies between teams. Can play more like 
a prop (i.e. battering ram) or a hooker (i.e. playmaker) depending on 
the requirements of the coach. 
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with the opportunity to ground the ball for a try, than it is if you are stood on your own 
20m line, where running 10 metres does not provide the same opportunity to score a try). 
Recently, action by action spatial data (i.e. x, y coordinates for each action) has become 
available, which could help to provide an understanding of this context. There is therefore 
scope for research, which can objectively rate player performances based on the actions 
they take and the locations in which they take them. 

 
2.3.2 Team and Player Performance Analysis in Rugby League 

Unlike the sports mentioned in Section2.2, rugby league is an example of a sport with 
poor data availability. Indeed, action by action spatial data only became available in the 
Super League in 2020. As a result of this poor data availability, no study has analysed 
action by action data in rugby league. Prior to 2020, only the first action of each play 
was coded with spatial information, which meant that only play by play analyses similar 
to that ofChan et al.(2021) could be conducted (Holbrook et al.,2019;Kempton et al., 
2016). Consequently, the majority of research considering team and player performances 
in rugby league is limited to the use of accumulated count data as performance indicators 
(Parmar et al.,2018;Wedding et al.,2020;Woods et al.,2017). This section highlights 
the elements of both types of analysis (i.e. using accumulated counts as performance 
indicators and play by play data), which aim to enhance the coaches’ ability to evaluate 
player and team performances in rugby league. 

 
2.3.2.1 Accumulated Count Data Analysis in Rugby League 

Woods et al.(2017) analysed the relationship between 14 author selected performance 
indicator variables and the win/lose dichotomous match outcome and team league posi- 
tion at the end of the season. The authors used 376 observations from the 2016 National 
Rugby League season, from which 2 drawn matches were removed. The performance 
indicators were accumulated at the fixture level (i.e. counts of the performance indica- 
tors per match) for the match outcome analysis and the season level (i.e. counts of the 
performance indicators per season) for the league position analysis. A conditional infer- 
ence classification tree (Hothorn et al.,2006) was used to establish the extent to which 
the 14 selected team performance indicators could be used to explain individual match 
outcomes. Ordinal regression, via cumulative link mixed models, was used to estimate 



2.3 Rugby League 

42 

 

 

 
 

the relationship between performance indicators and the team’s final league position. Five 
team performance indicators were used to predict match outcome by the conditional in- 
ference classification tree: try assists, all run metres, line breaks, dummy half runs and 
offloads. The model was able to accurately classify 91% of wins and 66% of losses in 
the data set. The authors showed that missed tackles were significantly related to a worse 
final league position by the ordinal regression, whereas kick metres and dummy half runs 
were associated with an improved final league position. Coaches could use the results as 
performance indicators to measure performance or influence tactical strategies. 

Parmar et al.(2018) extended the previous work in rugby league (Woods et al.,2017) 
by utilising a more data driven approach within the selection of performance indicators. 
Their model attempted to predict match outcome using performance indicator counts ac- 
cumulated at the fixture level. Their data was taken from the 2012-2014 Super League 
seasons and used a total of 567 matches. 45 action variables were used as performance 
indicator variables by subtracting the away team’s performance from the home team’s 
performance. The authors used principal component analysis (Jolliffe,2002) to reduce 
45 performance indicators to 10 linear combinations. Logistic regression was used with 
these 10 performance indicators against a dichotomous match outcome (win/lose) depen- 
dent variable. Exhaustive chi-square automatic interaction decision trees (Kass,1980) 
were used to evaluate the importance of the principal components with respect to the out- 
come variable. The model accurately predicted match outcome with 88.3% accuracy in 
the training data set and 90.5% accuracy in the testing data set. The three most impor- 
tant performance indicators were identified as “making quick ground” (i.e. progressing 
quickly towards the opposition try line), “amount of possession” (i.e. how many actions 
the team performs with the ball) and “form” (i.e. whether the team won or lost a previous 
set of matches). By utilising a principal component analysis approach, the authors were 
able to group together different performance indicators and provide two key modifiable 
elements (“making quick ground” and “amount of possession”), which coaches could use 
to measure performance. The inclusion of “form” provided little useful information from 
a practical perspective. 

Wedding et al.(2020) followed a similar data driven approach to understand seasonal 
changes in performance indicator variables for different playing positions. They used 
34,047 observations from the 2015-2019 seasons. 48 performance indicators were iden- 
tified at a player level and normalised to playing time prior to analysis. The authors used 
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principal component analysis to reduce the 48 performance indicators to 14 linear combi- 
nations. The 14 performance indicators accounted for 58.5% of the variance in the data. 
Two-step cluster analysis (Chiu et al.,2001) was used to group players into positional 
groups based on their performance indicators. Six positional groups were identified by 
the authors’ data driven approach, compared to four groups highlighted by previous re- 
search (Sirotic et al.,2011). Discriminant analysis showed that players were correctly 
classified into the six positional groups with 62.9% accuracy using the 14 performance 
indicators. The authors were able to identify the combinations of performance indica- 
tors most relevant to each positional group, providing a set of performance indicators that 
coaches could use to measure performances at the accumulated count data level. 

 
2.3.2.2 Play by Play Data Analysis in Rugby League 

As mentioned in Section2.2.2, although accumulated count data can provide performance 
indicators which coaches can use to evaluate performances or change tactics, the studies 
provide few direct insights into the sport on an action by action basis. This is because 
accumulated counts disregard the context surrounding each individual action. However, 
whereas in other sports action by action and tracking data have become readily available 
and high quality analyses have been conducted (Fernández et al.,2021;Liu et al.,2020), 
at the onset of this PhD this data was not yet available, so these analyses could not yet be 
conducted in rugby league. Indeed, only play by play data (i.e. the location of the first 
action of each play) had been considered in the literature (Holbrook et al.,2019;Kempton 
et al.,2016). 

Kempton et al.(2016) produced the first variation of an EPV model in rugby league 
based on the location of the play-the-ball (the first action of each play). The authors 
used 155,352 observations from 768 matches in the 2010-2013 seasons of the National 
Rugby League. The x, y coordinates of each play-the-ball were noted and assigned to 
one of seventy 10m x 10m zones on the pitch. The reward was calculated as the number 
of points scored by the next try scoring action plus an approximate value for the 2 point 
conversion kick based on the probability of it being scored. Dynamic programming was 
used to estimate the expected long-run value of the difference in points scored by the team 
in possession and its opposition. The model was run five times, once for each play within 
an attacking set. Figure2.16provides an EPV plot of the pitch. The results showed that 
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Figure 2.16: Kempton et al.(2016) EPV plot. 
 
 

the closer a team was to the opposition try line irrespective of play number, the more 
points they were likely to score. Similarly, the closer the team was to the opposition try 
line at the start of the attacking set, the more likely they were to score points. The study 
provides a good introduction to the use of Markovian principles within the sport of rugby 
league but provided very few practical applications. Furthermore, the zone sizes appeared 
to be arbitrarily chosen. As such, there is scope for an empirical study which considers 
different zone sizes and attempts to provide more practical applications, similar to the 
insights provided in other sports (Chan et al.,2021;Singh,n.d.). 

Holbrook et al.(2019) also used play-by-play data in rugby league to concurrently 
predict five possession/match outcomes. The authors used more than 250,000 play-the- 
ball actions from over 750 games in the 2015-2018 seasons of the National Rugby League. 
Rather than preprocessing the data in a specific manner, the authors used embedding lay- 
ers to obtain high level feature information for specific elements of the model. The inputs 
to the model therefore included the raw values for score difference, time remaining and 
x,y co-ordinates of the play-the-ball. Also included were individual embedded features 
for the x,y position co-ordinates, tackle number with a back-to-back set dummy variable, 
one hot encoded team ID with season ID, and one hot encoded opponent ID with sea- 
son ID. The authors used a mixture density neural network (Bishop,1994) to predict five 
outcomes on a play-by-play basis. These outcomes were: expected metres gained in the 
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next play; expected try during the next play; expected try in this set; win probability for 
the match; scoreline prediction for the match. The authors showed how the results could 
be used to evaluate team performances both in real-time and post-match. They did this 
by considering the expected metres gained and probability of scoring a try within a set in 
real-time. Offensive and defensive value over average metrics were also produced, which 
highlighted a team’s ability to attack or defend better than expected measures across the 
season. These metrics were shown to be well related to the final league position of each 
team. The results of the study were mainly developed for entertainment purposes (i.e. 
use on television), but coaches could use them as performance indicators similar to the 
accumulated count data described above. 

 
2.4 Summary 

The aim of this PhD is to develop new methodologies to evaluate player and team per- 
formances in rugby league using match event level data. Within the literature, two broad 
areas of research were identified in this area: accumulated count data analyses and action 
by action (or play by play) data analyses. The key limitation of accumulated count data 
analyses, highlighted at the beginning of Sections2.2.2and2.3.2.2, is that they do not 
provide contextual data surrounding the actions completed. For example, a 10m run in 
rugby league is much more valuable 9m from the opposition try line than 20m from the 
opposition try line as running from 9m provides the possibility for the ball to be grounded 
for a try, but running from 20m does not. Similarly, a pass to a player with no opponents 
in front of him is more valuable than a pass to a player who has three defenders directly in 
front of him, as the player receiving the ball has greater opportunity to progress towards 
the opposition try line with no opponents in front of him than he does with three oppo- 
sition players to get through or around. Accumulated count data analyses are unable to 
account for all of this information, which reduces their validity with respect to evaluating 
player and team performances. Consequently, accumulated count data analyses will not 
be considered within this thesis. 

Prior to the onset of this PhD, two studies considered play by play data analyses in 
rugby league (Holbrook et al.,2019;Kempton et al.,2016). These studies used x, y 
coordinate data from the first action of each play (the play-the-ball) to provide some 
spatial context within their models.Kempton et al.(2016) produced the first EPV model 



2.4 Summary 

46 

 

 

 
 

in rugby league, which provided insights into the value of different locations on the pitch. 
They used dynamic programming with fixed zone sizes, which allowed greater insights 
than previously. However, they framed their analysis at a global level (i.e. what happens 
in the league, rather than what specific teams/players do) on a play by play level, limiting 
the usefulness of the results in practice. Furthermore, the zone sizes were arbitrarily 
chosen, rather than through data-driven analysis or expert insight (Cervone et al.,2016), 
and it is unclear how this affected the results obtained. The work provides a valuable basis 
from which future research within the sport could be conducted though, as they show how 
the episodic nature of rugby league can be harnessed within an MDP framework to gain 
interesting results. (Holbrook et al.,2019) adopted a deep learning approach to understand 
team performances in rugby league. They showed the expected metres gained in a set on a 
play by play basis, alongside the expected try probability. Furthermore, they extended the 
results to provide metrics evaluating teams’ attacking and defensive performances. The 
work provides useful information to practitioners in the National Rugby League at a play 
by play level, but it does not consider individual action data or the actions taken by each 
team to achieve the success they did. As such, the insights it provides with respect to the 
development of tactical strategies is limited. 

Table2.4provides a summary of the action by action data analyses currently available 
across all sports. The literature can be split into two main strands: spatial trends analyses 
and EPV models. Although EPV models have gained considerably more attention within 
the literature, there is scope for the two models to be used together to understand player 
and team performances, as shown byFern ández et al.(2021) who used their pitch control 
model within their comprehensive deep learning approach to calculating EPV in foot- 
ball. The following subsections analyse both strands of literature (spatial trends analyses 
and EPV models), evaluating their suitability for adaptation and validation within rugby 
league. 

 
2.4.1 Spatial Trends Models 

Recall from Definition2.2.1that spatial trends analyses attempt to estimate how likely 
is it that a team will control the ball in a given location, or where is a player or team 
likely to pass the ball. Three studies have considered these analyses in sport with respect 
to player and team performances (Fernández and Bornn,2018;Mallepalle et al.,2020; 
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Table 2.4: Summary of studies considering variations of action by action or play by play 
data analyses across all sports 

 

Author Data Method Outcome 
Spearman 
et al. 
(2017) 

38 English Premier 
League matches from 
the 2015/16 season, 
event and tracking 
data from 10,875 
passes 

Bayesian estimation 
of physics-based 
approach 

Produced a pitch control 
model estimating the prob- 
ability of a successful pass 
for every location on pitch 

 

Fernández 20 Spanish First and Manipulated the Produced a pitch control 
and 
Bornn 
(2018) 

Second  Division 
matches, equalling 
2.4 million frames of 
tracking data only 

bivariate    normal 
distribution using 
speed and direction of 
player movements 

model based on the prob- 
abilistic pitch influence of 
each player 

 

Mallepalle 27,171 quarterback Kernel  density  esti- Produced a model which 
et al. 
(2020) 

passes from 2017- 
2018 NFL seasons 

mation to produce 
smooth passing prob- 
ability surface 

estimated the probability 
of quarterbacks passing to 
different locations across 
the pitch 

 

Cervone 
et al. 
(2016) 

2013/14 NBA season 
action and tracking 
data (”over 1 billion 
space-time observa- 
tions”) 

Bayesian approach 
following Markovian 
principles 

Produced EPV model ca- 
pable of rating player per- 
formances 
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Fernández 633 English Premier Decomposed MDP Produced EPV model ca- 
et al. 
(2021) 

League matches be- 
tween 2013-2015, ac- 
tion and tracking data 

deep learning ap- 
proach to learn 
individual models for 
each action 

pable of rating player and 
team performances 

 

Decroos 
et al. 
(2019) 

11,565 European 
football  matches 
between 2012-2018 
(14.4 million actions) 

CatBoost algorithm 
separately predicting 
goal scored or con- 
ceded within next 10 
actions 

Produced VAEP model ca- 
pable of rating player per- 
formances 

 

Routley 
and 
Schulte 
(2015) 

2.8 million actions 
from the 2006/07 
National Hockey 
League season 

Markov Game model 
to evaluate action val- 
ues 

Produced an action im- 
pact rating to evaluate 
player performances in ice 
hockey 

 

Liu and 
Schulte 
(2018) 

3.3 million actions 
from the 2015/16 
National Hockey 
League season 

Deep reinforcement 
learning algorithm to 
evaluate action values 

Produced a goal impact 
rating to evaluate player 
performances in ice 
hockey 

 

Liu et al. 
(2020) 

4.6 million actions 
across ten European 
football leagues in 
2017/18 

Two tower deep re- 
inforcement learning 
algorithm to estimate 
action values for each 
team individually 

Produced a goal impact 
rating to evaluate player 
performances in football 

 

Singh 
(n.d.) 

Matches from 
2017/18 English 
Premier League 

Dynamic program- 
ming to model 
transition matrix 

Produced xT model, able 
to value player and team 
performances 
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Merhej 
et al. 
(2021) 

760 English Premier 
League matches be- 
tween 2017-2019 

Multi-layer percep- 
tron model to predict 
xT, which would 
have been achieved 
without a defensive 
action taking place 

Produced a defensive ac- 
tion xT model which val- 
ues defensive actions 

 

Chan 
et al. 
(2021) 

Play by play data 
from 2013/14- 
2016/17 National 
Football League sea- 
sons (164,299 plays) 

Dynamic program- 
ming to model 
transition matrix of an 
MRP 

Produced points gained 
metric able to value differ- 
ent types of plays and dif- 
ferentiate between teams’ 
performances 

 

Kempton 
et al. 
(2016) 

155,352 play-the-ball 
observations from 
the National Rugby 
League between 
2010-2013 

Dynamic program- 
ming used to estimate 
the expected long-run 
value of the difference 
in points scored by 
the team in possession 
and its opposition 

Provided an understanding 
of valuable play-the-ball 
locations for a team in pos- 
session 

 

Holbrook 
et al. 
(2019) 

More than 250,000 
play-the-ball observa- 
tions from the Na- 
tional Rugby League 
between 2015-2018 

Mixture density neu- 
ral network to pre- 
dict five outcomes, in- 
cluding expected me- 
tres and try for the set 
and match score pre- 
diction 

Produced a defence- 
adjusted value over 
average metric to evaluate 
attacking and defensive 
team performances 

 
 
 

Spearman et al.,2017). Although the methods used byFern ández and Bornn(2018) and 
Spearman et al.(2017) are extremely valuable within football, their value in rugby league 
is more limited due to the laws of the game, which dictate that all thrown passes must 
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be directed backwards. There would be great value in adapting the methods for use with 
kicking actions, but these actions occur 10 times less frequently than passes so the need 
for a model of this type in rugby league is questionable. Regardless, tracking data is not 
available in the sport so it is not yet possible to adapt and validate the methods previously 
used in football (Fernández and Bornn,2018;Spearman et al.,2017) in rugby league. 

Unlike the football studies (Fernández and Bornn,2018;Spearman et al.,2017), the 
work ofMallepalle et al.(2020) in American football could be adapted and validated in 
rugby league with some small changes.Mallepalle et al.(2020) used KDEs to calcu- 
late quarterback pass probability distributions from 27,121 quarterback passes. In rugby 
league, adopting this analysis at a player level makes limited sense as thrown passes 
must travel backwards and kicks don’t happen frequently enough for tactical value to be 
gleaned from the analysis. However, adopting a similar KDE approach at a team level 
could be extremely valuable as it may provide an insight into areas on the pitch where a 
team is most likely to control the ball and thus an indication of the spatial trends of their 
attacking performances. Furthermore, it may be possible to compare these distributions 
within teams against different opponents or between teams to identify teams who per- 
form in a similar or dissimilar manner.Mallepalle et al.(2020) did not directly quantify 
the differences between players in their study so there is scope for the development of a 
novel metric, which is able to quantify the differences in spatial trends of attacking per- 
formances between and within teams. Coaches may be able to use this understanding to 
develop tactical strategies for future matches. 

 
2.4.2 Expected Possession Value Models 

Recall from Definition2.2.2that EPV models value player and team performances based 
on the probability of points/goals being scored conditional on the location of the action. 
The literature surrounding EPV models, whilst still developing, is much more widespread 
than the research considering the spatial trends of attacking performances. A wide variety 
of analytical methods have been adopted, including deep learning (Fernández et al.,2021; 
Merhej et al.,2021), machine learning (Decroos et al.,2019), Markovian approaches 
(Chan et al.,2021;Liu et al.,2020;Liu and Schulte,2018;Routley and Schulte,2015; 
Singh,n.d.) and Bayesian analysis (Cervone et al.,2016). However, a central tenet of 
most EPV models is the adoption of Markovian principles to some extent regardless of 
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the specific analytical methods employed. Such usage in other sports with more advanced 
analyses than rugby league is positive givenKempton et al.(2016) have already shown 
that a Markovian approach can be used in rugby league to generate interesting findings. 
Despite this, there are significant limitations relating to the application, adaptation and 
validation of EPV models from other sports in rugby league. 

The models ofFern ández et al.(2021) andCervone et al.(2016) provide gold stan- 
dard approaches from a deep learning and statistical analysis perspective. However, both 
employ tracking data, which is not currently available in rugby league and so they cannot 
currently be applied to the sport. Similarly, although the work ofDecroos et al.(2019), 
Liu and Schulte(2018) andLiu et al.(2020) is valuable in the space of analysing event 
level only data, the amount of data required to run these models (11,565 matches (Decroos 
et al.,2019), 3.3 million actions (Liu and Schulte,2018), 4.6 million actions (Liu et al., 
2020)) is not available in rugby league. From a pure data availability perspective, the two 
most replicable models areSingh(n.d.) who used a Markov Decision Process approach 
for his xT model in football andChan et al.(2021), who adopted a Markov Reward Pro- 
cess approach for their model in American football, similar to that used byKempton et al. 
(2016) in rugby league. WhereasChan et al.(2021) did not need to select two dimensional 
zones due to the rules of American football,Singh(n.d.) did and used arbitrary zone sizes 
in his xT model, similar toKempton et al.(2016). A much more appropriate method 
of zone size selection would be using expert opinion (Cervone et al.,2016) or utilising 
a data driven approach, which has never previously been attempted. There is therefore 
scope for a sequence of studies within rugby league, which apply, adapt and validate the 
previous literature (Kempton et al.,2016;Singh,n.d.) by first empirically determining 
the most suitable zone sizes for use within rugby league using a data driven approach, 
building upon the Markov Reward Process approach previously employed (Chan et al., 
2021;Kempton et al.,2016), and second, extend the Markov Reward Process approach to 
include actions, adopting a Markov Decision Process approach similar toSingh(n.d.). 

Alongside the issue of data availability, some of the EPV models produced in other 
sports cannot be applied to rugby league due to its unique rules and playing style. For 
example, the episodic nature of rugby league, whereby a tackle by the opposition team 
does not result in a change in possession precludes the adaptation of the Markov Game 
approach suggested in ice hockey (Liu and Schulte,2018;Routley and Schulte,2015). 
The two tower deep reinforcement learning approach suggested byLiu et al.(2020) as an 
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extension to these methods in football could be used in rugby league if a suitable quan- 
tity of data was available though. A further consideration is the point scoring structure 
of rugby league, which is much more complicated than football or ice hockey. In rugby 
league, there are five possible possession outcomes (Table2.1), which limits the appli- 
cability of some of the models previously identified within the literature. For example, 
the individual probability estimation of scoring and conceding outcomes suggested by 
Decroos et al.(2019) would result in an impractical eight models being calculated. Con- 
versely, aggregating the point scoring methods together as has been done in all approaches 
to date, where multiple scoring options are available (Cervone et al.,2016;Chan et al., 
2021;Kempton et al.,2016) could result in the loss of valuable data with respect to op- 
position strategies. For example, if a team is more likely to score or concede a penalty 
goal or a converted try from a specific area of the pitch, it would be useful for a coach to 
be able to use that information to devise attacking or defending strategies for upcoming 
matches. Given the data available within rugby league, it could be difficult to identify 
an appropriate machine learning method to estimate the probability of individual posses- 
sion outcomes, so a Bayesian approach, which provides parameter estimates conditional 
on prior knowledge and the data available may be more appropriate. A Bayesian ap- 
proach has previously been used in the EPV literature (Cervone et al.,2016), albeit not 
to estimate individual possession outcome probabilities, and has been used to show un- 
certainty in player ratings based on the data available for them within accumulated count 
data analysis (Whitaker et al.,2021). This novel approach to the estimation of individual 
possession outcome probabilities could therefore provide the best analytical solution to 
the challenges imposed by low data availability sports. The flexibility of such a model 
could also provide significantly more scope to produce novel metrics evaluating player 
and team performances. 

 
2.5 Methodological Overview 

In Section2.4, the difficulties associated with adapting some methods previously used in 
the literature to the unique characteristics of rugby league were highlighted. In this sec- 
tion, a high level overview of the methods which will be used in this thesis is provided. 
Four key methods will be considered: Markov models from the existing literature (Kemp- 
ton et al.,2016;Routley and Schulte,2015;Singh,n.d.) will be applied, adapted and 
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extended to rugby league in Chapters3and4; Kernel Density Estimation will be used to 
evaluate the spatial trends of attacking performances, adapting previous research in Amer- 
ican football (Mallepalle et al.,2020) in Chapter5; Bayesian analysis will be used to pro- 
duce a completely novel EPV model capable of estimating individual possession outcome 
probabilities in Chapter6; and distributional comparisons will be used to provide single 
value differences between pitch surfaces for the first time, via the Kullback-Leibler (KL) 
Divergence (Chapter3and Wasserstein Distance (Chapter5). 

A Markov model is a stochastic process, which at a minimum, consists of a finite set 
of states. These states represent the models’ understanding of the world and assume the 
Markov property ensuring that transition to future states is dependent only on the current 
state. A Markov Reward Process (MRP), as utilised in Chapter3, is a tuple of states, 
transition probability matrix, reward function and discount factor. It is used to calculate a 
value function for each state, by back propagating the rewards through the chain of states 
subject to the discount factor. A Markov Decision Process (MDP), as used in Chapter4, 
extends an MRP by adding an action to the framework. Within an MDP, the agent chooses 
an action in each state, which results in a transition to the next state. Consequently, MDPs 
calculate a value function for each state, action pair. 

Kernel Density Estimation (KDE) is a method of probability density estimation, which 
applies kernel smoothing. Kernel smoothing allows a probability density to be estimated 
as a weighted function of its neighbouring values. The two most important elements of 
KDE are the kernel chosen (e.g. uniform, triangular, normal or cosine) and the band- 
width. The bandwidth parameter influences the smoothness of the KDE model and con- 
trols “overfitting” by establishing the amount of data smoothed at each point. 

Bayesian analysis is a statistical approach to data analysis centred around Bayes The- 
orem. There are three main elements: the prior distribution; the likelihood function; and 
the posterior distribution. The prior distribution defines the current knowledge surround- 
ing a model parameter. The likelihood function defines the method through which the 
data influences the posterior distribution. The posterior distribution balances the prior 
knowledge with the observed data to identify the most plausible parameter values given 
the evidence available. This evidence based approach to estimating parameter values al- 
lows complex model parameters to be estimated using significantly less data than the 
machine learning and deep learning approaches previously considered in sport (Decroos 
et al.,2019;Fern ández et al.,2021;Liu et al.,2020). 
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Comparisons between distributions allow the differences in pitch surfaces between 
teams or matches to be evaluated using a single measure. In Chapter3, the KL Diver- 
gence will be used. The KL Divergence is a measure used to understand the similarity 
between two discrete distributions. It is a type of statistical distance rather than a metric 
and compares an approximating distribution to a true distribution. KL Divergence val- 
ues range from 0, indicating the two distributions are identical, to infinity, indicating no 
relationship between the two distributions. The Wasserstein distance, used in Chapter5, 
is a distance function defined between probability distributions on a given metric space. 
It is closely related to optimal transport planning. The optimal transport plan describes 
the movement of mass between distributions with minimal cost, subject to a cost func- 
tion. The Wasserstein distance is the total cost of all mass movements described by this 
transport plan subject to the cost function. 
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Chapter 3  
Markov Reward Processes for the 
Quantification of Team Attacking 
Performances 

 
3.1 Introduction 

This first study of this thesis proposes a model evaluating EPV in rugby league. The 
study applies and adapts the work ofKempton et al.(2016) in rugby league andSingh 
(n.d.) in football. Their research is adapted in this study by the implementation of a data 
driven approach to empirically evaluate different zone sizes, rather than their arbitrary 
selection (Kempton et al.,2016;Singh,n.d.). This data driven approach compares dif- 
ferent zone sizes’ ability to replicate future team attacking performances in rugby league. 
A novel method through which team attacking performances can be quantified in rugby 
league is also proposed. The study was published in PLOS One (Thomas Sawczuk, Anna 
Palczewska, Ben Jones. Development of an expected possession value model to analyse 
team attacking performances in rugby league. PLOS One, 16(11): e0259536, 2021) and 
presented to the England Rugby League Performance Unit. The feedback provided by the 
Performance Unit provided validation for the model. 
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Table 3.1: Details of the four nodes provided by Opta in each rugby league fixture xml 
file 

 
 

Node Details 
 

Match data Details all the actions which took place in the match 
Team data Identifies the players who played in the match 
Fixture data Stores information regarding the fixture itself (e.g. scores, 

kick-off time, referee) 
Play-the-ball data Provides information for timings of every play-the-ball in 

the match 
 
 

3.2 Methodology 

In this section, the methodology for this study is presented. It describes the data used 
and the preprocessing steps required to prepare the data for analysis. The Markov Reward 
Process framework used in this study is defined and a method of calculating expected pos- 
session values is proposed. The configuration of different zone sizes and their compari- 
son through the Kullback-Leibler Divergence is described. A novel method of comparing 
team performances through z-score analysis is outlined. 

 
3.2.1 Data 

In this study, event level match-play data were obtained from Opta (Stats Perform, Lon- 
don, UK) for the 2019 Super League season. The event level data provided by Opta was 
produced via human annotation of the actions taking place on the field of play during 
matches. In the 2019 season, 200 unique actions were coded by Opta. These actions 
included player actions (e.g. passes, kicks, runs, tackles) and miscellaneous actions (e.g. 
video referee try reviews). A full list of actions and their definitions is provided in Ap- 
pendixB. The data for each match was provided by Opta in separate xml files. Each xml 
file had four nodes: match data; team data; fixture data; and play-the-ball data. Table 
3.1describes each of these nodes. Raw information was provided by Opta using unique 
identifiers rather than ’real’ values. 

The match data node contained 28 variables describing each action taking place on 
the pitch.  Due to the coding processes used by Opta, 10 of the variables contained 
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Table 3.2: Important match data variable definitions from the 2019 Opta dataset. 
 
 

Column Definition 
 

ID Unique identifier for each action row 
FXID Unique identifier for the fixture 
PLID Unique identifier for the player 
team id Unique identifier for the player’s team 
MatchTime Time the action took place in seconds 
x coord x coordinate of the action 
y coord y coordinate of the action 
action Unique identifier for the group of action taking place 
ActionType Unique identifier for the action taking place 
Actionresult Unique identifier for the result of the action 
Metres Metres gained by the action 
PlayNum The play number within the attacking set 
SetNum The attacking set number within the match 

 
 

missing data or no data at all; these variables were therefore removed. Variables re- 
moved for this reason included: psID; qualifier3, qualifier4; qualifier5; sequence id; 
player advantage; score advantage; flag; advantage; and assoc player. Five further vari- 
ables were removed because they didn’t provide information relevant to the objectives of 
this study: ps timestamp and ps endstamp, which provided video-time information for 
when the match event occurred; period, which identified the period of the match; and 
x coord end and y coord end, which identified the end locations of actions so the Me- 
tres variable could be calculated. Consequently, only 13 variables within the match data 
node were deemed to be useful for this analysis. Table3.2provides definitions of these 
variables. 

Team data provided 8 details to identify the players on the pitch, including their player 
ID, team ID, player name, team name, shirt number, position on the team sheet and min- 
utes played. Fixture data outlined 13 details about the match including the time and date 
it started, the match day week, IDs for the home and away teams, their full team names 
and scores at full time and information regarding the referee. Play-the-ball data provided 
technical information surrounding the contact time, completion of the tackle and the foot 
contact of each play-the-ball. 

In the 2019 Super League season, 180 matches were completed across 12 Super 



3.2 Methodology 

58 

 

 

 
 

League clubs. A total of 372,173 match events were recorded across 13,574 sets (me- 
dian 75.5 sets per match, interquartile range 72-79) and 59,233 plays (median 5 plays per 
set, interquartile range 3-6). Across the season, 1,369 tries were scored (1,013 successful 
conversion kicks, 356 unsuccessful conversion kicks), 271 penalty goals were attempted 
(239 successful, 32 unsuccessful) and 89 drop goals were attempted (42 successful, 47 
unsuccessful). 

 
3.2.2 Data Preprocessing 

Figure3.1provides an overview of the data preprocessing completed within this study. 
The preprocessing steps converted the 180 raw xml files described above to a single file 
of 59,233 rows and 7 columns ready for analysis. Full details of each preprocessing step 
are provided below. 

The match action data, provided in 180 xml files, were collected and integrated into 
a single dataset of 372,173 rows and 28 columns. To achieve this, the match data node 
variables were extracted from each xml file into separate tables and then concatenated 
together. The team data node variables were also extracted into tables for each fixture. 
These were used to map unique team identifiers to the real team name. Similarly, Opta’s 
action definitions and unique identifiers (AppendixB) were used to obtain the real name 
of the coded actions. 

Due to the coding protocol used by Opta in 2019, which aimed to calculate accumu- 
lated counts rather than promote action by action analysis, not all actions were provided 
with accurate coordinates. The first action of each play was always accurately coded, but 
all other actions’ location in the play were coded according to the first action. As such, 
accurate location data could only be extracted on a play by play, rather than action by 
action basis. This is similar to the studies conducted byKempton et al.(2016) andHol- 
brook et al.(2019). Furthermore, the actions were not always coded in order - sometimes 
a defensive action was coded before an attacking action had taken place within a play - 
so all defensive (e.g. tackles) and auxiliary (e.g. yellow card, video referee review) were 
removed from the dataset before any play by play information was extracted. 

The dataset was filtered so that only the first action of each play (as coded by Opta) 
was included. In a rugby league match, the first action of a play is typically a catch of 
the ball from an opposition kick or pass interception, a receipt of the ball from a play-the- 
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Figure 3.1: Data preprocessing workflow 
 
 

ball in a handover or a kick (either for the touchline or towards the goal) after a penalty 
has been awarded. Opta did not code play-the-ball receptions in 2019, so the first action 
usually referred to the pass or run taken by a player after the play-the-ball reception. 
Figure3.2plots the frequency with which 14 unique actions began a play in this study. 
All 14 actions occurred on at least 100 occasions, but a completed pass was clearly the 
most frequent action beginning a play. A further 29 actions began a play on less than 
100 occasions: Advantage; Other Carry; Normal; Tap Down; Forward; Play Carry; Off 
Target; Pick And Go; Chip; Bad Pass; Scraps; Charge Down; Bomb; Fast; Initial Break; 
Lost Ball Forced; Kicking Offence; Penalty Goal; Cross Pitch; Attacking Catch; In Goal 
Catch; In Goal Touchdown; Drop Goal; Carried Dead Ball; Key; Forward Pass; In Goal 
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Figure 3.2: Counts for the actions beginning a play according to the Opta coding system 
in 2019. All actions began a play on at least 100 occasions. Complete passes are clearly 
the most frequent action. 

 
 

Tap Out; Support Carry; Carried In Touch. All actions could be broadly grouped into 
pass, catch, run, kick or foul categories. 

In 2019, Opta provided data in continuous x, y coordinates for a 120m x 68m hori- 
zontal pitch. Previously,Kempton et al.(2016) binned these coordinates into 10m x 10m 
zones. To begin the analysis at a finer granularity in this study, the x, y coordinates for 
each play were initially binned into ∼ 5m x 5m zones, resulting in 308 zones (14 along 
the x-axis, 24 along the y-axis). For ease of calculation and due to Opta only providing 
data to the nearest metre, the outer two columns were 4m wide rather than 5m. 

All plays were assigned the value of the true points scored within the play: 6 points 
for converted try; 4 points for unconverted try; 2 points for penalty goal; 1 point for drop 
goal. If no points were scored within the play, a value of 0 was given. 
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Table 3.3: List of events, which could end an attacking possession 
 
 

Event Description 
 

Handover A completed sixth tackle by the opposition team, re- 
sulting in a change in possession 

Kick at goal Conversion, Penalty Goal or Drop Goal attempt 
Foul Any foul resulting in the opposition team receiving 

the ball (e.g. conceding a penalty) 
Misplaced pass A pass or tap down, which is intercepted by the oppo- 

sition 
Misplaced kick Any kick not caught by the team in possession, in- 

cluding bombs/grubber kicks and positional kicks 
Handling error Any situation where the ball is lost from the player’s 

possession (e.g. lost in contact, dropped catch) 
 
 

The data were split into attacking possessions. An attacking possession was coded as 
a sequence of plays, which began when a team gained possession of the ball and ended 
when the team lost possession of the ball (i.e. due to an error, handover, field kick, 
penalty, drop goal or try). Any situation where a pass/kick missed its target player, but was 
not successfully collected by the opposition, resulted in the continuation of the attacking 
possession for the attacking team. Table3.3provides a list of the events, which could 
end an attacking possession and defines them. Using these definitions, the 59,233 plays 
were grouped into 10,156 attacking possessions (median length 4 plays per attacking 
possession, range 1-26 plays). The time point of the play within the attacking possession 
sequence was also identified, starting at 1 to represent the beginning of the possession. 

After completing the preprocessing steps, the dataset was filtered to include only the 
columns required for analysis. As such, the 180 individual xml files were preprocessed 
into a single dataset of 59,233 rows and 7 columns. Table3.4provides an example of 
two attacking possessions from the first match of the 2019 Super League season. It shows 
Wigan lose the control of the ball in their second play before St Helens take control of the 
ball, progress towards the Wigan try line and score a converted try (6 points) in the fifth 
play of their attacking possession. 

A workflow for the analyses completed in this study is shown in Figure3.3. All 
elements of analysis are described in the following subsections. 
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Table 3.4: First two attacking possessions of the preprocessed dataset. FXID is the fixture 
ID; PosNum refers to the time point of the play within the possession sequence. 

 
 

FXID Team Possession PosNum x y Points 
124011 Wigan 1 1 3 6 0 
124011 Wigan 1 2 4 6 0 
124011 St Helens 2 1 10 18 0 
124011 St Helens 2 2 2 20 0 
124011 St Helens 2 3 5 19 0 
124011 St Helens 2 4 7 20 0 
124011 St Helens 2 5 13 20 6 

 
 
 

 
 

Figure 3.3: Data analysis workflow 
 
 

3.2.3 Markov Reward Processes 

The aim of this study was to apply, adapt and extend the work ofKempton et al.(2016) 
in rugby league andSingh(n.d.) in football by producing an EPV model with empirically 
evaluated zone sizes. As with previous literature (Kempton et al.,2016;Singh,n.d.), a 
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Markovian approach was employed. A Markov Chain is a stochastic model, describing a 
sequence of possible events, in which the probability of each event depends only on the 
state attained in the previous event (Howard,1971). A Markov Reward Process (MRP) 
is stochastic process, which extends a Markov Chain by adding a reward to each state. It 
can be defined as follows: 

Definition 3.2.1. A Markov Reward Process is a tuple (S, P, R, γ) where: 

• S is a finite set of states 
 

• P is a transition probability matrix 
 

• R is a reward function 

• γ is a discount factor (γ ∈ [0, 1]) 

A state s provides information about the environment, through which a value function 
can be learnt (Sutton and Barto,2018). In an MRP, a Markov chain is represented by a 
finite sequence of states, termed an episode. Within rugby league, attacking possessions 
can be considered as episodes, whereby the location of an action or play can be considered 
the state. As a rugby league match takes place within a finite area and in a finite period 
of time, it is well suited to Markovian modelling. For a state s and successor state s′, the 
state transition probability is defined by: 

 
Pss′ = P[st+1 = s |St = s] 

 
The transition probability matrix P defines transition probabilities from all states s to all 
successor states s′. It can be estimated explicitly, through dynamic programming (Kemp- 
ton et al.,2016), or learned implicitly, using real sequences of possessions. The reward R 
represents the value of performing a specific transition between states. In rugby league, 
it can be defined as the true points outcome achieved by the play in the team’s attacking 
possession. 

In an MRP, the return Gt at time t is defined as the total discounted reward from time 
t: 

∞ 
Gt = γkRt+k+1, (3.1) 

k=0 
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where k represents the number of time steps in the future and the discount factor γ ∈ [0, 1] 

provides the present value of future rewards. The value of receiving reward R after k + 1 
time-steps is γkR. 

Subsequently, the value function V (s) for state s can be defined as the expected return 
when starting from state s (Definition3.2.2). It provides the long-term value of s, which 
in rugby league identifies the expected points obtained from state s at the end of the 
possession. 

Definition 3.2.2. State value function V (s) for state s is the expected return when starting 
from state s: 

V (s) = E[Gt|St = s], (3.2) 

There are three main methods of solving MRPs: dynamic programming, Monte Carlo 
learning or Temporal Difference learning. Dynamic programming (Bellman,1954) is 
a model based learning method. It is a collection of algorithms, which can calculate the 
MRP when the transition matrix is known or can be estimated. Monte Carlo and Temporal 
Difference learning (Sutton and Barto,2018) are model free learning methods. They do 
not require the transition matrix to be estimated as they learn from experience. Of the three 
methods, Monte Carlo learning is the only algorithm which utilises full episodes when 
updating its values. Consequently, it is the only algorithm which does not provide biased 
estimates (Sutton and Barto,2018). This is advantageous in rugby league as complete 
samples of attacking possessions from the 2019 Super League season could be used to 
update state values using the algorithm. 

 
3.2.3.1 Expected Possession Value 

Recall the definition of EPV as an instantaneous snapshot of a possession’s value (Def- 
inition2.2.2). The value function V (s) for state s provides this instantaneous value for 
state s based on the expected points obtained at the end of the possession. Consequently, 
within the MRP framework, the EPV for state s can be considered analogous to the value 
function for state s: 

EPV(s) = V (s) 

EPV(s) was simulated using the Monte Carlo every visit algorithm for the reasons 
described in Section3.2.3. The Monte Carlo every visit algorithm calculates the empirical 
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k=0 

 
 
 

Algorithm 1 Monte Carlo algorithm for EPV calculation 
Input : Episode dataset, including states and rewards, γ, empty returns list (Returns), 

empty counter list (Counter), empty state list (S) 
Output: EPV, populated with results of MRP 

for episode do 
for time-step, t do 

Gt = 
P∞

 γkRt+k+1 

 
 

end 
end 

Returns(s) = Returns(s) + Gt 
Counter(s) = Counter(s) + 1 

Returns(s) 
Counter(s) 

 
mean of each zone by summing the discounted rewards achieved by the zone and dividing 
by the total number of visits. The algorithm allows every visit to a zone to be valued, 
which is important within rugby league because there is no guarantee that plays will move 
between states as the opposition defence aims to stop progression up the pitch. Algorithm 
1provides pseudocode for the Monte Carlo every visit algorithm used to simulate the EPV 
for each state. The algorithm loops through each episode and time-step t, calculating 
the return Gt. The return is added to the returns list for state s and the counter list is 
incremented by 1. At the end of this loop, the total returns are divided by the counter 
count for each state to provide a list of EPVs. 

In this study, the 5m x 5m zone of the location of the first action of each play was used 
as the state for the MRP. Episodes were defined as a sequence of these zone locations for 
each attacking possession performed by a team (Section3.2.2). Unique episodes were 
created for every attacking possession. Rewards were calculated as the points outcome 
of the play: converted try scored (+6); unconverted try scored (+4); penalty goal scored 
(+2); drop goal scored (+1); loss of possession or missed goal attempt (0). In plays where 
none of these scoring events occurred, a reward of 0 was assigned. Each time-step within 
the attacking possession sequence was assigned a reward, so it was possible for a zone 
to receive multiple rewards in an episode if more than one play began in a given location 
within the same attacking possession. However, a point scoring reward was only obtained 
once per attacking possession (i.e. it was treated as a transition to a terminal state). 

EPV(s) = 
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3.2.4 Configuration of Zone Sizes 

EPV models provide the expected points obtained from state s at the end of the possession. 
In this study, the state refers to an area on the rugby league pitch in which the play begins. 
Previous studies in rugby leagueKempton et al.(2016) and football (Singh,n.d.) have 
used arbitrarily selected zone sizes, which may or may not provide the most suitable 
configuration for use in the sport. This study aimed to adapt and extend previous work 
(Kempton et al.,2016;Singh,n.d.) by empirically evaluating the most suitable zone size 
for use within the sport. In order to achieve this aim, six zone configurations of different 
granularities were evaluated by the Kullback-Leibler Divergence based on their ability to 
reproduce future team attacking performances. 

Two fixed zone size configurations were used. The EPV-308 contained 5m x 5m zones 
and used the EPV values obtained from the Monte Carlo every visit algorithm as defined 
in Section3.2.3.1. For comparison with the literature, the EPV-77 was produced using 
the same zones atKempton et al.(2016) in the field of play, plus a further 7 zones in the 
team’s own try area. The EPVs for the EPV-77 zones were calculated as the weighted 
average of the four 5m x 5m EPV-308 zones they encompassed. 

Four further zone configurations were produced through statistical analysis of the 
EPV-308 column and row match EPVs. The match EPV, EPV(s, m), obtained by zone s 
in match m was calculated as 

 

EPV(s, m) = EPV(s), (3.3) 
z∈m 

 

where z ∈ m refers to the set of all unique visits to zone s in match m. 
The zones’ match EPVs were summed at the column and row level to produce 14 

column match EPVs for each match and 22 row match EPVs. This process was completed 
individually for each match. Figure3.4depicts the process, showing how the 308 zonal 
match EPVs were summed to create the row and column match EPVs. 

Visual inspection of the initial column and row match EPV’s showed that they could be 
smoothed based on their spatial similarity. Therefore, the fourteen columns were averaged 
at the 5m level symmetrically to form seven ∼ 10m columns (i.e. the two widest columns 
were averaged, then the two second widest, through to the two most central columns) and 
the twenty two 5m rows were aggregated sequentially to produce eleven 10m rows similar 
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Figure 3.4: Depiction of relationship between EPV-308 zones and columns/rows used 
for statistical analysis. Top figure represents the 5m x 5m EPV-308 zones. Bottom left 
figure represents the columns; column match EPVs were produced by summing the match 
EPV for all zones from the EPV-308 in the column. Bottom right figure represents the 
rows; row match EPVs were produced by summing the match EPV for all zones from the 
EPV-308 in the row. Pitch lines represent own try area, half way line and opposition try 
area for team attacking in upwards direction. 

 
 

toKempton et al.(2016) (i.e. the bottom two rows were averaged, followed by the next 
two rows, through to the top two rows). 

Linear mixed models were then used to evaluate whether the columns or rows could 
be aggregated further. In separate models, the column match EPV and row match EPV 
were added as dependent variables, with team and fixture ID added as random effects. To 
identify differences in their match EPVs, column and row indexes were added to their re- 
spective models as categorical fixed effects. Minimal effects testing (Murphy and Myors, 
1999) was used in four separate models to determine whether two columns or rows could 
be combined against a smallest effect size of interest (SESOI) of 0.5, 1.0, 1.5 and 2.0 
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units of match EPV respectively. These values were chosen to provide a range of possible 
EPV models within the constraints of realistic point scoring differences that could hap- 
pen (i.e. it is unlikely that a team would produce more than 2 points greater value from 
any given zone per match). Pairwise least square mean comparisons between consecutive 
columns or rows were used to evaluate whether they should be aggregated or differenti- 
ated. If the difference between two columns or rows was statistically significant (i.e. P < 
0.05), they remained separate as the difference in match EPV generated by the two factors 
was greater than the SESOI. Otherwise, the column/row match EPVs were averaged and 
compared to the next column or row’s match EPV. This iterative process was conducted 
independently for the columns and rows. 

At the end of this iterative process, the remaining columns and rows were combined to 
form a grid. The zones were aggregated at a row level between -10m and 10m, but not at 
the column level. This decision was made because the zones within the row were visited 
infrequently relative to other zones on the pitch and so had highly variable values. At 
SESOI 0.5, 7 rows and columns were present, resulting in 37 zones (EPV-37). At SESOI 
1.0, 4 rows and 6 columns were present, resulting in 19 zones (EPV-19). At SESOI 1.5, 4 
rows and 4 columns were present, resulting in 13 zones (EPV-13). At SESOI 2.0, 3 rows 
and 4 columns were present, resulting in 9 zones (EPV-9). The aggregated zone values 
were calculated as a weighted average of the values of the EPV-308 zones they were com- 
posed of. Figure3.5highlights this process by depicting the similarities and differences 
between the EPV-308, EPV-77 and EPV-19 in the 30m closest to the opposition try line. 
It shows the symmetrical aggregation of columns for EPV-19, compared to the sequential 
aggregation for EPV-77. 

 
3.2.4.1 Kullback-Leibler Divergence 

To empirically evaluate the most suitable zone sizes for use within rugby league, a cri- 
terion measure was required. In this study, this was defined from a team performance 
analysis perspective. In order for a model to be useful in practice, it must bear some 
semblance to future performances. Therefore, the reproducibility of future team attacking 
performances by a set of previous matches was used to empirically evaluate the suitability 
of EPV model zone sizes in rugby league. The Kullback-Leibler (KL) Divergence (Kull- 
back and Leibler,1951) was used to evaluate this reproducibility. The KL Divergence 
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Figure 3.5: Depiction of similarities and differences between EPV-308 (A), EPV-77 (B) 
and EPV-19 (C) in the 30m closest to the opposition try line. Each zone from the EPV-77 
and EPV-19 is a weighted average of the EPV-308 zones they are composed of. Dotted 
line represents the opposition 20m line. 

 
 

was used to assess the number of matches required before a team’s future attacking per- 
formances (i.e. their next fixture’s performances) were reproduced by previous fixtures. 

Definition 3.2.3. The KL Divergence DKL calculates the similarity between a true distri- 
bution P and an approximating distribution Q: 

 

DKL (P ||Q) = P(s) log 
P(s) 

, (3.4) 
Q(s) 

s∈S 



3.2 Methodology 

70 

 

 

(s) =  k=1 , (3.5) 
L.k=i−1 Gmk(s) 

k=1 s=1 

 
 

where s refers to the finite elements of the distribution, in this case the zones within the 
EPV models 

The KL Divergence is a measure used in information theory and provides an under- 
standing of the similarity between two distributions of values. It is an unbounded measure, 
where a value of 0 indicates two distributions are perfectly matched, but a value of infinity 
indicates that there is no relationship between the two distributions. A value of infinity 
typically occurs when an element of the approximating distribution has no value (i.e. has 
not been visited), but has been visited by the true distribution. 

In this study, the subsequent fixture was used as the true distribution. The 1 to 10 
previous fixtures were separately used as the approximating distribution to identify how 
many previous fixtures were required to establish an understanding of the team’s future 
attacking performances. Prior to evaluation by the KL Divergence, all EPV’s were nor- 
malised to produce an EPV distribution (EPVD). The EPV distribution for each zone s in 
k matches prior to match i was calculated as 

 

M L.k=i−1 L.S G 
 

(s) 
 

where M is the set of k matches and S is the set of all zones in the model. 
The percentage of non-infinity values was used to provide an understanding of how 

many of the subsequent match’s zones were visited in the previous matches. The KL 
Divergence value was used as a measure of similarity between the two EPV distributions’ 
values. All results are provided as a mean and standard deviation values across the twelve 
Super League clubs. 

 
3.2.5 Z-score Analysis 

After identifying the most suitable zone sizes for use within rugby league (EPV-19 model), 
z-score analysis was proposed as a novel method of quantifying individual team attacking 
performances. Each team’s EPV distribution across the whole 2019 Super League season 
was calculated for the EPV-19 via Equation3.5. Z-score analysis of the EPV distributions 
was used to calculate a standardised value evaluating how the proportion of match EPV a 
team obtained from a zone compared to the average across all teams in the Super League. 

EPV
 m
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Values of +1 and +2 z-scores were chosen to represent a greater and much greater propor- 
tion of match EPV generated by the zones relative to the average team (i.e. the zone was 
more valuable to the team), values of -1 and -2 were used to represent a lower and much 
lower proportion of match EPV generated (i.e. the zone was less valuable to the team). 

 
3.3 Results 

The aim of this study was to apply, adapt and extend previous work in rugby league 
(Kempton et al.,2016) and football (Singh,n.d.), which used EPV models with arbi- 
trarily selected zone sizes. To achieve this aim, 180 xml files provided by Opta were 
preprocessed into a table of 59,233 rows and 7 columns (Table3.4). Using this data, an 
MRP, similar toKempton et al.(2016), produced the EPV-308 model from 308 ∼ 5m 
x 5m zones. To adapt and improve previous work (Kempton et al.,2016), five further 
EPV models were produced from the EPV-308 zones. In total, six models were produced 
- two with fixed zone sizes: EPV-308 and EPV-77; and four with zones aggregated or 
differentiated based on statistical evaluation of their column and row match EPVs: EPV- 
37, EPV-19, EPV-13 and EPV-9. The KL Divergence was used to empirically evaluate 
the zone configurations’ ability to reproduce future team attacking performances. The 
EPV-19 was validated as the most suitable model for use within rugby league. Z-score 
analysis was proposed as a novel method of quantifying the differences in team attacking 
performances across the 2019 Super League season using the EPV-19. 

 
3.3.1 EPV models 

Six EPV models were developed in this study, two with fixed zone sizes: EPV-308 (∼ 
5m x 5m zones), EPV-77 (∼ 10m x 10m zones, equivalent toKempton et al.(2016)); and 
four with statistically calculated variable zone sizes: EPV-37, EPV-19, EPV-13 and EPV- 
9. Figure3.6illustrates the zone values for all six EPV models. Tables3.5to3.16outline 
the results of the statistical analyses conducted to obtain the four variable zone size models 
(EPV-37, EPV-19, EPV-13, EPV-9). Tables3.5and3.6provide the column match EPV 
and row match EPV respectively for the EPV-308. Tables3.7and3.8outline the column 
and row match EPVs, aggregated after visual inspection, from which the statistical tests 
for the EPV-37, EPV-19, EPV-13, EPV-9 began. 
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Figure 3.6: EPV-308 (A), EPV-77 (B), EPV-37 (C), EPV-19 (D), EPV-13 (E), EPV-9 (F). 
These are the six EPV-models produced in this study, where the number represents the 
number of zones present within the model. Lines represent the 20m line and 50m line. 
All zone values are shaded to the same scale. 

 
 

The statistical tests used to identify the columns and rows of EPV-37, where the 
SESOI was 0.5, are shown in Tables3.9and3.10. The tests used to identify the columns 
and rows of EPV-19, where the SESOI was 1.0, are shown in Tables3.11and3.12. The 
tests used to identify the columns and rows of EPV-13, where the SESOI was 1.5, are 
shown in Tables3.13and3.14. The tests used to identify the columns and rows of EPV-9, 
where the SESOI was 2.0 are shown in Tables3.15and3.16. 

Across all models, there is a general trend that the closer the zone is to the opposition 
try line, the more valuable it is. Similarly, central zones are more valuable than wider 
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Table 3.5: Linear mixed model derived average column match EPV for EPV-308 
columns. Bracketed values are metres included for column and 95% confidence inter- 
vals for column match EPV. 

 
 

Column Column match EPV Column Column match EPV 
1 (0-3m) 1.41 (1.04 - 1.78) 8 (34-38m) 12.27 (11.92 – 12.61) 
2 (4-8m) 2.72 (2.38 - 3.06) 9 (39-43m) 9.72 (9.38 – 10.07) 
3 (9-13m) 4.52 (4.18 - 4.87) 10 (44-48m) 7.76 (7.41 – 8.10) 
4 (14-18m) 6.06 (5.72 – 6.40) 11 (49-53m) 5.71 (5.37 – 6.05) 
5 (19-23m) 7.10 (6.75 – 7.44) 12 (54-58m) 5.43 (5.09 – 5.78) 
6 (24-28m) 8.57 (8.23 – 8.92) 13 (59-63m) 2.55 (2.20 – 2.89) 
7 (29-33m) 12.78 (12.44 – 13.12) 14 (64-68m) 1.13 (0.76 – 1.50) 

 

Table 3.6: Linear mixed model derived average row match EPV for EPV-308 rows. 
Bracketed values are metres included for row and 95% confidence intervals for row match 
EPV. 

 
 

Row Row match EPV Row Row match EPV 
1 (-10 to -5m) 0.19 (-0.38 – 0.76) 12 (46-50m) 3.03 (2.77 – 3.29) 
2 (-4 to 0m) 0.45 (0.09 – 0.81) 13 (51-55m) 3.59 (3.33 – 3.85) 

3 (1-5m) 1.12 (0.86 – 1.38) 14 (56-60m) 4.16 (3.90 – 4.42) 
4 (6-10m) 2.12 (1.86 – 2.38) 15 (61-65m) 3.67 (3.42 – 3.93) 
5 (11-15m) 3.31 (3.05 – 3.57) 16 (66-70m) 4.03 (3.77 – 4.28) 
6 (16-20m) 3.21 (2.95 – 3.47) 17 (71-75m) 4.91 (4.65 – 5.17) 
7 (21-25m) 3.15 (2.89 – 3.41) 18 (76-80m) 5.29 (5.03 – 5.55) 
8 (26-30m) 3.22 (2.97 – 3.48) 19 (81-85m) 6.72 (6.46 – 6.98) 
9 (31-35m) 2.88 (2.62 – 3.14) 20 (86-90m) 9.12 (8.86 – 9.38) 
10 (36-40m) 3.00 (2.75 – 3.26) 21 (91-95m) 11.43 (11.17 – 11.68) 
11 (41-45m) 3.38 (3.12 – 3.64) 22 (96-100m) 6.52 (6.25 – 6.79) 

 
 

zones as indicated by the darker colours in these areas. These findings are congruent 
with those ofKempton et al.(2016). Similarly, in all six models much greater value is 
generated within 20-30m of the opposition try line, compared with more than 30m away 
from the try line. This finding is similar to previous research within football, which shows 
that the chance of scoring is significantly reduced to below 7% when shots are taken from 
outside the 18 yard box (Spearman,2018). The identification of these zones of value in 
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Table 3.7: EPV-308 symmetrically aggregated column match EPVs. Bracketed values 
are metres included for column and 95% confidence intervals for column EPV from linear 
mixed model. 

 
 

Column Column match EPV per fixture 
 

1 (1,14) 1.27 (0.97 – 1.57) 
2 (2,13) 2.63 (2.35 – 2.92) 
3 (3,12) 4.98 (4.70 – 5.26) 
4 (4,11) 5.88 (5.60 – 6.17) 
5 (5,10) 7.43 (7.14 – 7.71) 
6 (6,9) 9.15 (8.87 – 9.43) 
7 (7,8) 12.52 (12.24 – 12.81) 

 

Table 3.8: EPV-308 sequentially aggregated row match EPVs. Bracketed values are 
metres included for row and 95% confidence intervals for row EPV from linear mixed 
model. 

 
 

Row Row match EPV per fixture 
 

1 (1,2) 0.32 (-0.02 – 0.67) 
2 (3,4) 1.62 (1.42 – 1.82) 
3 (5,6) 3.26 (3.06 – 3.46) 
4 (7,8) 3.19 (2.99 – 3.39) 
5 (9,10) 2.94 (2.74 – 3.14) 
6 (11,12) 3.20 (3.00 – 3.41) 
7 (13,14) 3.87 (3.67 – 4.08) 
8 (15,16) 3.85 (3.65 – 4.05) 
9 (17,18) 5.10 (4.90 – 5.30) 
10 (19,20) 7.92 (7.72 – 8.12) 
11 (21,22) 8.97 (8.77 – 9.18) 

 
 

all six models provides a new method through which attacking possessions can be valued. 
Furthermore, they provide a valuable methodology through which the zones visited in 
tactical set plays could be measured to establish which play may be most advantageous 
against a given team. 
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Table 3.9: Statistical comparison between columns at an SESOI of 0.5 for EPV-37. 
Where numbers are separated by commas, they have been averaged within the linear 
mixed model. Difference and significance provide the mean difference (95% confidence 
intervals) between the columns and whether this was significant according to an SESOI of 
0.5. Combine? Indicates whether the column values were averaged before comparing to 
the next column. Comparisons began at the outermost columns before progressing more 
centrally. 

 
 

Columns included Difference Significance Combine? 
2 - 1 1.36 (1.06 – 1.66) P < 0.0001 No 
3 - 2 2.35 (2.06 – 2.63) P ¡ 0.0001 No 
4 - 3 0.91 (0.62 – 1.18) P = 0.0025 No 
5 - 4 1.54 (1.26 – 1.82) P ¡ 0.0001 No 
6 - 5 1.72 (1.44 – 2.00) P ¡ 0.0001 No 
7 - 6 3.38 (3.09 – 3.66) P ¡ 0.0001 No 

 

Table 3.10: Statistical comparison between rows at an SESOI of 0.5 for EPV-37. Where 
numbers are separated by commas, they have been averaged within the linear mixed 
model. Difference and significance provide the mean difference (95% confidence in- 
tervals) between the rows and whether this was significant according to an SESOI of 0.5. 
Combine? Indicates whether the row values were averaged before comparing to the next 
row. Comparisons began inside the attacking teams try area before progressing up the 
pitch to the opposition try area. 

 
 

Rows included Difference Significance Combine? 
2 - 1 1.30 (0.93 – 1.67) P < 0.0001 No 
3 - 2 1.64 (1.41 – 1.87) P < 0.0001 No 
4 - 3 -0.07 (-0.30 – 0.16) P = 0.5542 Yes 

5 - 3,4 -0.28 (-0.48 – -0.08) P = 1.000 Yes 
6 - 3,4,5 0.07 (-0.12 – 0.26) P = 1.000 Yes 

7 - 3,4,5,6 0.73 (0.54 – 0.91) P = 0.0079 No 
8 - 7 -0.02 (-0.26 – 0.21) P = 1.000 Yes 

9 - 7,8 1.24 (1.04 – 1.44) P < 0.0001 No 
10 - 9 2.82 (2.59 – 3.05) P < 0.0001 No 
11-10 1.06 (0.82 – 1.29) P < 0.0001 No 
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Table 3.11: Statistical comparison between columns at an SESOI of 1.0 for EPV-19. 
Where numbers are separated by commas, they have been averaged within the linear 
mixed model. Difference and significance provide the mean difference (95% confidence 
intervals) between the columns and whether this was significant according to an SESOI of 
1.0. Combine? Indicates whether the column values were averaged before comparing to 
the next column. Comparisons began at the outermost columns before progressing more 
centrally. 

 
 

Columns included Difference Significance Combine? 
2 - 1 1.36 (1.06 – 1.66) P = 0.0096 No 
3 - 2 2.35 (2.06 – 2.63) P < 0.0001 No 
4 - 3 0.91 (0.62 – 1.18) P = 0.7441 Yes 

5 - 3,4 2.00 (1.75 – 2.24) P < 0.0001 No 
6 - 5 1.72 (1.44 – 2.00) P < 0.0001 No 
7 - 6 3.38 (3.09 – 3.66) P < 0.0001 No 

 

Table 3.12: Statistical comparison between rows at an SESOI of 1.0 for EPV-19. Where 
numbers are separated by commas, they have been averaged within the linear mixed 
model. Difference and significance provide the mean difference (95% confidence in- 
tervals) between the rows and whether this was significant according to an SESOI of 1.0. 
Combine? Indicates whether the row values were averaged before comparing to the next 
row. Comparisons began inside the attacking teams try area before progressing up the 
pitch to the opposition try area. 

 
 

Rows included Difference Significance Combine? 
2 - 1 1.30 (0.93 – 1.67) P = 0.0559 Yes 

3 - 1,2 2.29 (2.04 – 2.53) P < 0.0001 No 
4 - 3 -0.07 (-0.30 – 0.16) P = 1.000 Yes 

5 - 3,4 -0.28 (-0.48 – -0.08) P = 1.000 Yes 
6 - 3,4,5 0.07 (-0.12 – 0.26) P = 1.000 Yes 

7 - 3,4,5,6 0.73 (0.54 – 0.91) P = 0.9983 Yes 
8 - 3,4,5,6,7 0.56 (0.38 – 0.74) P = 1.000 Yes 

9 - 3,4,5,6,7,8 1.72 (1.54 – 1.89) P < 0.0001 No 
10 - 9 2.82 (2.59 – 3.05) P < 0.0001 No 
11-10 1.06 (0.82 – 1.29) P = 0.3333 Yes 
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Table 3.13: Statistical comparison between columns at an SESOI of 1.5 for EPV-13. 
Where numbers are separated by commas, they have been averaged within the linear 
mixed model. Difference and significance provide the mean difference (95% confidence 
intervals) between the columns and whether this was significant according to an SESOI of 
1.5. Combine? Indicates whether the column values were averaged before comparing to 
the next column. Comparisons began at the outermost columns before progressing more 
centrally. 

 
 

Columns included Difference Significance Combine? 
2 - 1 1.36 (1.06 – 1.66) P = 0.8165 Yes 

3 - 1,2 3.03 (2.78 – 3.28) P < 0.0001 No 
4 - 3 0.91 (0.62 – 1.18) P = 1.000 Yes 

5 - 3,4 2.00 (1.75 – 2.24) P < 0.0001 No 
6 - 5 1.72 (1.44 – 2.00) P = 0.0614 Yes 

7 – 5,6 4.24 (4.00 – 4.48) P < 0.0001 No 
 

Table 3.14: Statistical comparison between rows at an SESOI of 1.5 for EPV-13. Where 
numbers are separated by commas, they have been averaged within the linear mixed 
model. Difference and significance provide the mean difference (95% confidence in- 
tervals) between the rows and whether this was significant according to an SESOI of 1.5. 
Combine? Indicates whether the row values were averaged before comparing to the next 
row. Comparisons began inside the attacking teams try area before progressing up the 
pitch to the opposition try area. 

 
 

Rows included Difference Significance Combine? 
2 - 1 1.30 (0.93 – 1.67) P = 0.8581 Yes 

3 - 1,2 2.29 (2.04 – 2.53) P < 0.0001 No 
4 - 3 -0.07 (-0.30 – 0.16) P = 1.000 Yes 

5 - 3,4 -0.28 (-0.48 – -0.08) P = 1.000 Yes 
6 - 3,4,5 0.07 (-0.12 – 0.26) P = 1.000 Yes 

7 - 3,4,5,6 0.73 (0.54 – 0.91) P = 1.000 Yes 
8 - 3,4,5,6,7 0.56 (0.38 – 0.74) P = 1.000 Yes 

9 - 3,4,5,6,7,8 1.72 (1.54 – 1.89) P = 0.0086 No 
10 - 9 2.82 (2.59 – 3.05) P < 0.0001 No 
11-10 1.06 (0.82 – 1.29) P = 0.9999 Yes 
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Table 3.15: Statistical comparison between columns at an SESOI of 2.0 for EPV-9. 
Where numbers are separated by commas, they have been averaged within the linear 
mixed model. Difference and significance provide the mean difference (95% confidence 
intervals) between the columns and whether this was significant according to an SESOI of 
2.0. Combine? Indicates whether the column values were averaged before comparing to 
the next column. Comparisons began at the outermost columns before progressing more 
centrally. 

 
 

Columns included Difference Significance Combine? 
2 - 1 1.36 (1.06 – 1.66) P = 1.000 Yes 

3 - 1,2 3.03 (2.78 – 3.28) P < 0.0001 No 
4 - 3 0.91 (0.62 – 1.18) P = 1.000 No 

5 - 3,4 1.99 (1.75 – 2.24) P = 0.518 Yes 
6 - 3,4,5 3.06 (2.83 – 3.29) P < 0.0001 No 

7 - 6 3.38 (3.09 – 3.66) P < 0.0001 No 
 

Table 3.16: Statistical comparison between rows at an SESOI of 2.0 for EPV-9. Where 
numbers are separated by commas, they have been averaged within the linear mixed 
model. Difference and significance provide the mean difference (95% confidence in- 
tervals) between the rows and whether this was significant according to an SESOI of 2.0. 
Combine? Indicates whether the row values were averaged before comparing to the next 
row. Comparisons began inside the attacking teams try area before progressing up the 
pitch to the opposition try area. 

 
 

Rows included Difference Significance Combine? 
2 - 1 1.30 (0.93 – 1.67) P = 0.9999 Yes 

3 - 1,2 2.29 (2.04 – 2.53) P = 0.0112 No 
4 - 3 -0.07 (-0.30 – 0.16) P = 1.000 Yes 

5 - 3,4 -0.28 (-0.48 – -0.08) P = 1.000 Yes 
6 - 3,4,5 0.07 (-0.12 – 0.26) P = 1.000 Yes 

7 - 3,4,5,6 0.73 (0.54 – 0.91) P = 1.000 Yes 
8 - 3,4,5,6,7 0.56 (0.38 – 0.74) P = 1.000 Yes 

9 - 3,4,5,6,7,8 1.72 (1.54 – 1.89) P = 0.9991 Yes 
10 - 3,4,5,6,7,8,9 4.31 (4.13 – 4.48) P < 0.0001 No 

11-10 1.06 (0.82 – 1.29) P = 1.000 Yes 
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3.3.2 Reproducibility of Future Attacking Performances 

To empirically evaluate the suitability of different zone configurations, the EPV models’ 
ability to reproduce future attacking performances was measured via the KL Divergence. 
Table3.17shows the percentage of non-infinity values for all six models after 1-10 previ- 
ous matches (i.e. the percentage of fixtures where all subsequent match’s zones had been 
visited in the previous matches). For EPV-308, there were only three occasions where 
this was greater than 0% (8, 9 and 10 previous matches). There was a consistent increase 
in the percentage of non-infinity values as the number of previous fixtures increased for 
EPV-77 and EPV-37, peaking at 77 ± 8 % and 97 ± 4 % respectively after 10 previous 
fixtures. For EPV-19, there was a large increase in the percentage of non-infinity values 
before 6 previous fixtures were considered, after which limited change was observed (95- 
98 % from 6 to 10 fixtures). A similar trend was present for EPV-13 before 3 previous 
fixtures were considered (96-100 % from 3 to 10 fixtures). In EPV-9, all values were not 
infinity after only 3 previous fixtures. 

Figure3.7shows the KL Divergence for EPV-77, EPV-37, EPV-19, EPV-13 and EPV- 
9. After 8 (KL Divergence = 1.50 ± 0.19), 9 (KL Divergence = 1.41 ± 0.15) and 10 
(KL Divergence = 1.44 ± 0.15) previous matches, the KL Divergence for EPV-308 was 
still greater than any other model after any number of previous matches, rendering it 
considerably less useful than all other models. The KL Divergence reduced as more 
previous matches were considered in all EPV models in Figure 3. For EPV-37, EPV-19, 
EPV-13 and EPV-9, the majority of this reduction occurred between 1 and 3 previous 
matches before the values stabilised. For EPV-77, the values stabilised after six previous 
matches. 

Although commonly identified as a key element of any model quantifying team at- 
tacking performances, few studies have attempted to evaluate the reproducibility of future 
attacking performances in their models (Sarmento et al.,2014). The results showed that 
although the EPV-308, EPV-77 and EPV-37 provide significantly more variability than 
either the EPV-19, EPV-13 and EPV-9 with regards to the values of different zones, they 
had poor reproducibility between fixtures. This was noticeable in both the percentage of 
subsequent match zones visited and in the similarity in reward distributions between the 
previous and subsequent matches. The EPV-308, EPV-77 and EPV-37 therefore have lim- 
ited application in practice when evaluating team attacking performances. By contrast, the 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Number of previous matches 
Model 1 2 3 4 5 6 7 8 9 10 

EPV-308 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 2(2) 4(4) 5(5) 
EPV-77 0(0) 2(2) 13(6) 26(7) 40(9) 51(12) 63(9) 69(8) 72(8) 77(8) 
EPV-37 1(2) 19(7) 48(8) 67(11) 77(8) 85(9) 89(9) 92(6) 95(5) 97(4) 
EPV-19 23(8) 59(6) 76(6) 88(8) 91(5) 95(4) 96(3) 96(3) 98(3) 98(3) 
EPV-13 61(9) 89(3) 96(4) 98(4) 99(2) 100(0) 100(0) 100(0) 100(0) 100(0) 
EPV-9 86(5) 99(2) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 
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Figure 3.7: KL Divergence values for EPV-77, EPV-37, EPV-19, EPV-13 and EPV-9. A 
lower value indicates greater similarity in reward distributions between previous matches 
and the subsequent match. EPV-308 not included as values could not be calculated for 
the first seven matches due to no non-infinity values being present. Line provides mean 
value, shaded area indicates standard deviation. 

 
 

EPV-19, EPV-13 and EPV-9 all showed excellent reproducibility between fixtures. When 
six previous matches were considered, these three models were able to visit all zones in 
the subsequent match on 95-100% of occasions. Furthermore, the EPV distributions had 
low KL Divergence values indicating that proportion of points obtained from each zone 
was also very similar to the subsequent match. 

Six matches is a relatively small number of matches to consider given the excellent re- 
producibility shown, suggesting that any of the EPV-19, EPV-13 or EPV-9 models could 
be used to evaluate team attacking performance in rugby league. However, it is the use- 
fulness of the zones generated that should define which model is used in practice. The 
EPV-19 and EPV-13 both contain four rows (-10 to 10m, 10-70m, 70-80m, 80-100m), 
whereas the EPV-9 only contains three rows (-10m to 10m, 10-80m, 80-100m). As five 
of the six models produced suggest that the value of zones in the 70-80m row can be 
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differentiated from those around it, it is possible that the EPV-9 has oversmoothed the 
data, reducing its usefulness in practice. The EPV-19 and EPV-13 models only differ in 
the manner through which they split group the columns along the x-axis. The EPV-19 
has more columns (6), separating out the widest and second most central areas of EPV- 
13. This results in the EPV-13 having a smoother progression of zone values from wide to 
central. However, it also results in the value of the zones just outside the posts being much 
smaller relative to EPV-19 and EPV-37. Given the value of the central zones is of upmost 
importance for conversions of tries, the EPV-19 may be considered the more useful set of 
zones, but either model could be used in practice. 

 
3.3.3 Quantification of Teams’ Attacking Performances 

To quantify team attacking performances across the 2019 Super League season, z-score 
analysis of the EPV-19 model values was used. Figure3.8provides a numbered zone 
breakdown for the EPV-19. Figure3.9depicts the z-score analysis of each team’s attack- 
ing performances across the 2019 Super League season using the EPV-19 model. Using 
z-score analysis of the match EPV, it is clear that Hull generates a greater proportion of 
match EPV from different zones to Leeds when 10m-70m from its own try line. Hull also 
gains greater match EPV from wide areas (zones 3 and 4), whereas Leeds gains more 
match EPV centrally (zones 5-7) relative to other zones. The identification of these zones 
pre-match could assist teams in their tactical preparations. Furthermore, Figure3.9shows 
those teams who spread their attack more evenly. For example, from 80-100m, St Helens 
obtained a small proportion of its match EPV from the widest zone (14) compared to 
other Super League teams, but they generated similar proportions of match EPV across 
the rest of the zones. It is possible that this ability to generate value close to the average 
team across the majority of the pitch made the team difficult to defend against and could 
explain why they were one of the top points scorers across the season. The use of z-score 
analysis has strong potential as a method through which the areas on a pitch where an op- 
position team may attack can be highlighted quickly and efficiently, regardless of the EPV 
zone configuration used, enabling tactical preparations for future matches to be tailored 
to the opposition. 

The results of this study were presented to the England Performance Unit, where the 
work was widely praised as significantly more advanced than anything previously pro- 
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Figure 3.8: EPV-19 zones numbered so they can be distinguished from each other. Where 
numbers are repeated, both sides of the pitch make up the same zone (e.g. zone 2 is 
comprised of the widest ∼ 5m on both sides of pitch, between 10m and 70m from the 
team’s own try line. 

 
 

posed within the sport. However, reservations were made with respect to its immediate 
usability within the sport as the location of play-the-balls is heavily dependent on both 
the actions taken by the team in possession and the strategies of the defensive team. It 
was suggested that it could definitely be used as a starting point for further analysis or to 
confirm the anecdotal observations of performance analysts/coaches. To this end, the Per- 
formance Unit validated the reliability of the model by agreeing that the z-score analysis 
supported their anecdotal opinions of teams’ attacking performances in the 2019 Super 
League season. 

All analyses were conducted using bespoke Python scripts (Python 3.7, Python Soft- 
ware Foundation, Delawere, USA) or via Proc Mixed (SAS University Edition, SAS In- 



3.3 Results 

84 

 

 

 
 
 

 
 

Figure 3.9: Z-score analysis of teams’ attacking performances for the whole 2019 Super 
League season. Numbers 1-19 reflect the zone numbers in Figure3.8. A greater value 
indicates a greater proportion of EPV was obtained from the zone than the average Super 
League 2019 team. Distances are measured from the teams own try line. 

 
 

stitute, Cary, NC). The analyses were completed using a HP-Pavilion Laptop with an 
Intel Core i5-8250U 1.60 GHz processor and 8GB RAM. The Monte Carlo every visit 
algorithm used for the calculation of EPV-308 state values was timed at 17.24s. 
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3.4 Summary 

This study applied, adapted and extended the work ofKempton et al.(2016) in rugby 
league andSingh(n.d.) in football. Two EPV models with fixed zone sizes (EPV-308 
and EPV-77) were produced using an MRP similar to a previous study (Kempton et al., 
2016). In contrast to previous studies using Markovian approaches (Kempton et al.,2016; 
Singh,n.d.), four further variations of the EPV model (EPV-37, EPV-19, EPV-13, EPV- 
9) were produced using statistical analysis of the match EPV produced by columns and 
rows of zones from the EPV-308. Empirical evaluation of all six models, comparing their 
ability to reproduce future team attacking performances, identified the EPV-19 as the most 
suitable model for use within rugby league. A novel method of quantifying team attacking 
performances was proposed. It was applied to the empirically selected EPV-19 model to 
understand its validity, but could have been applied to any of the EPV models shown in 
this chapter. Practitioners can use the model to produce a high level understanding of the 
areas on the pitch that different teams generate value. The results indicate that only six 
previous matches need to be considered to provide this understanding. 

To validate the work, the results were published in PLOS One and presented to the 
England Rugby League Performance Unit. The England Performance Unit coaches pro- 
vided partial validation for the reliability of the model by agreeing that it provided an 
accurate representation of the attacking performances of different teams across the 2019 
Super League season. However, they questioned the long-term usability of the model due 
to its use of play by play, rather than action by action data, which limited the insights that 
could be generated. 

Although the work provides an excellent high level understanding of the areas on the 
pitch that different teams generate value, it is only a starting point for this type of analysis 
and is subject to limitations. The first of these, as indicated by the England Performance 
Unit, is that it only uses the first action of each play. This means it does not consider any 
action (e.g. pass, kick or run) individually so there is no possibility of adapting the model 
to evaluate player performances or understand team sequences of play. The second is that 
it does not directly predict future team attacking performances, nor does it provide any 
information as to whether being aware of future opposition team attacking performances 
can help a team to win fixtures. 

In this study, it was not possible to conduct action by action analysis due to the quality 
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of data required for such analyses being unavailable in the 2019 season. However, in 2020 
this data became available. Therefore, the next study will build upon the work completed 
in this chapter and consider individual actions within the EPV framework to evaluate 
player and team performances. 
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Chapter 4  
Markov Decision Processes for the 
Evaluation of Player and Team 
Performances 

 
4.1 Introduction 

A key limitation of the analysis conducted in Chapter3was that it could only consider 
play by play data (i.e. the first action of every play). Analysing action by action data 
(i.e. the location of each individual action) would allow the performances of teams and 
players to be evaluated in more detail. However, in 2019, such data was not available. In 
2020, Opta improved their data collection processes and location data became available 
for every action in the Super League, allowing action by action analyses to be conducted 
for the first time. Consequently, this study builds on the work described in Chapter3by 
proposing a model which evaluates player and team performances in rugby league using 
a Markov Decision Process (MDP) framework, applying and adapting ideas previously 
used in ice hockey (Routley and Schulte,2015) and football (Singh,n.d.). Action impact 
ratings are adapted from ice hockey (Routley and Schulte,2015) to analyse player and 
team performances using action values from the MDP for the first time in rugby league. 
Furthermore, context nodes are adapted from ice hockey (Routley and Schulte,2015) and 
football (Decroos et al.,2019) to allow further insight into player and team performances 
to be gleaned. The study was presented at the UKCI 2021 conference (Thomas Sawczuk, 
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Anna Palczewska, Ben Jones. ”Markov Decision Processes with contextual nodes as a 
method of assessing attacking player performance in rugby league” in 20th UK Workshop 
on Computational Intelligence, Aberystwyth, 2021), published in Advances in Compu- 
tational Intelligence Systems (Thomas Sawczuk, Anna Palczewska, Ben Jones. Markov 
Decision Processes with contextual nodes as a method of assessing attacking player per- 
formance in rugby league. In: Jansen, T., Jensen, R., Mac Parthalain, N., Lin, CM. (eds) 
Advances in Computational Intelligence Systems. UKCI 2021. Advances in Intelligent 
Systems and Computing, vol 1409. Springer, Cham.) and presented internally to the 
Sports Science department at Leeds Beckett University, whose feedback provided valida- 
tion for the model. 

 
4.2 Methodology 

In this section, the methodology for this study is presented. It describes the data used and 
the preprocessing steps required to prepare the data for analysis. The Markov Reward 
Process framework is recalled and extended to describe the Markov Decision Process and 
state, action values used in this study. Context nodes and action impact ratings are adapted 
for rugby league from ice hockey (Routley and Schulte,2015) and football (Decroos et al., 
2019) to provide insights into player and team performances. 

 
4.2.1 Data 

In this study, event level match-play data were obtained from Opta (Stats Perform, Lon- 
don, UK) for the 2020 Super League season. The data was produced via human annotation 
of the actions taking place and was downloaded from www.optaprorugby.com. In addi- 
tion to the 200 actions coded by Opta in the 2019 season, 33 additional unique actions 
were coded in 2020. These actions and their definitions are provided in AppendixB. As 
with the 2019 season, data for each of the 63 matches in the 2020 Super League season 
was provided in separate xml files, which each contained four nodes (Table3.1). 

The data received from Opta was formatted as described in Section3.2.1. As with 
Chapter3, missing data issues ensured that the same 13 variables from the match data 
node (Table3.2) were deemed to be useful for this study. However, whereas in the 2019 
data, location data was only fully available on a play by play basis (i.e. for the first 

http://www.optaprorugby.com/
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action of each play), in 2020 it became available on an action by action basis (i.e. for all 
actions). This increased data availability considerably improved the quality of analysis 
that could be completed, allowing the MRP approach of Chapter3to be extended to an 
MDP approach. However, only a limited amount of this higher quality data was available 
as the 2020 season was curtailed by the COVID-19 pandemic. 

In the 2020 Super League season, 63 matches were contested by 11 teams and 352 
players. A total of 146,493 match events were recorded (median 2331 events per match, 
interquartile range 2239-2405). Across the season, 481 tries were scored (381 successful 
conversion kicks, 100 unsuccessful conversion kicks), 50 penalty goals were attempted 
(46 successful, 4 unsuccessful) and 33 drop goals were attempted (16 successful, 17 un- 
successful). 

 
4.2.2 Data Preprocessing 

Figure4.1provides an overview of the data preprocessing completed within this study. 
The preprocessing steps converted the 63 raw xml files described above to a single file of 
77,045 rows and 9 columns. Full details of each preprocessing step are provided below. 

The match action data, provided in 63 xml files, were collected and integrated into a 
single dataset of 146,493 rows and 28 columns. To do this, the match data node variables 
were extracted from each xml file into separate tables and then concatenated together. 
The team data nodes were also extracted into tables for each fixture. These were used to 
map team unique identifiers to the real team name. Similarly, Opta’s action definitions 
and unique identifiers (AppendixB) were mapped to the real name of the coded actions. 

As previously stated, in 2020, location data was available for every action on the pitch. 
However, with only 146,493 actions across the season, it was not possible to consider a 
model which included both attacking and defensive actions due to the size of transition 
matrix this would require. Instead, all defensive and auxiliary actions were removed, 
providing a total of 77,045 attacking actions. For the puproses of this study, the attacking 
actions were organised into the seven grouped actions identified in Table4.1. These 
grouped actions represented the most common attacking actions, which when grouped 
together in sequences described every attacking possession within the dataset. 

Although location data was available for all actions, the coding protocol used by Opta 
was still geared towards considering accumulated action count measures, rather than ac- 
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Figure 4.1: Data preprocessing workflow 
 
 

tion by action analysis. Consequently, there were three action ordering issues that needed 
to be resolved to ensure that the sequence of actions considered by the MDP accurately 
represented true sequences of match play. These were: runs being coded in the action 
before a player had caught the ball; penalties being won before either a run or catch (or 
both) had occurred for the same player; and positional kicks occurring after a player had 
won a penalty, when the positional kick happened beforehand. All three ordering issues 
were resolved at this point. 

As with the 2019 data, each action in the 2020 dataset was marked with an x, y loca- 
tion, denoting the position of the pitch relative to a standard 100m x 68m rugby league 
pitch. For the purposes of this study, these locations were binned into the EPV-19 zones 
produced in Chapter3. The EPV-19 zones were chosen as these were empirically eval- 
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Table 4.1: Definitions of grouped actions used in this study. 
 
 

Action Definition Count 
Catch A successful receipt of the ball, either from a kick or 

a loose ball 
3198 

Pass A thrown pass aimed at a player on the same team 29192 
Positional Kick  A kick aimed to advance the position of the team or 

for a teammate to attempt to catch, but not aimed 
specifically at goal 

Run A run made by a player, whilst in possession of the 
ball 

PTB The restart action performed by a player after he has 
been tackled, indicates the beginning of the next play 

2955 
 
 

23543 
 

17689 

Penalty Won The act of winning a penalty 385 
Goal Kick A kick at goal, either from a penalty or a drop goal 83 

 
 

uated as the most suitable set of zones for use in rugby league in Chapter3. Figure4.2 
plots the EPV-19 zones against a standard rugby league pitch. Actions taking place in 
the opposition try area were included in the dataset to allow the rewards achieved to be 
backpropagated through the sequence of actions, but were not included or discussed when 
rating players because all attacking players will attempt to ground the ball for a try in this 
situation regardless of the previous action taken. 

Three variables were prepared for use as context nodes: period; match score; and 
team. The period refers to which of the two 40 minute halves was being played at the 
time of the action (1st or 2nd) and the match score refers to whether the team in possession 
is winning, drawing or losing at the beginning of the possession. These contextual factors 
were used to identify differences in players’ performances as both could affect the team’s 
strategy and therefore individual players’ decision making, either due to fatigue (second 
half actions are performed under greater fatigue than first half actions) or the urgency with 
which points need to be scored (losing is likely to be more urgent than winning). Team 
was chosen as a context node to allow the estimation of individual state, action values for 
different teams. 

As with Chapter3, each time-step in the possession was assigned a value based on the 
true points scored due to the action taken. Therefore, +6 was rewarded for a converted try, 
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Figure 4.2: Standard rugby league pitch (A). Lines represent try line, 20m from the try 
line and half way line. Rugby league pitch split into the 19 states used within this analysis 
(B). 

 
+4 for an unconverted try, +2 for a successful penalty goal and +1 for a successful drop 
goal. Errors were not penalised, so all other actions received a value of 0. 

The data was prepared for use within an MDP by separating it into unique attacking 
possessions. An attacking possession could start with any of the actions listed (except a 
goal kick), and ended due to handover, loss of possession due to error/foul play, points 
being scored, or a goal kick attempt. The possessions were only deemed to have ended 
if the opposing team successfully caught or passed the ball. Therefore, if a positional 
kick was attempted by the team in possession, and was dropped by the opposition, the 
resulting set of 6 tackles for the team who kicked the ball was considered part of the same 
attacking possession as previously. If the positional kick was successfully caught by the 
opposition, it began the process of a new unique attacking possession by the opposition 
team. Table4.2outlines a typical sequence for an episode used within this study. In the 
table, St Helens are shown to progress towards the opposition try line over the duration of 
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Table 4.2: Example episode sequence. FxID refers to fixture identification number, PLID 
refers to player identification number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 plays (each play starts after a play-the-ball (PTB) but forms part of the same attacking 
possession), before a try is scored in the 16th action of their possession. Player 19 starts 
the next attacking possession for St Helens by catching the opposition restart kick, which 
is not included in the episode sequences. 
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4.2.3 Markov Decision Processes 

The aim of this study was to extend the method presented in Chapter3by applying and 
adapting ideas from ice hockey (Routley and Schulte,2015) and football (Decroos et al., 
2019;Singh,n.d.). Drawing upon these ideas, methods of analysing player and team per- 
formances in rugby league using the action values from an MDP were proposed. Recall 
from Section3.2.3the definition of a Markov Reward Process (MRP) as a stochastic pro- 
cess, which extends a Markov chain by adding a reward to each state (Howard,1971). An 
MDP extends an MRP by adding an action to the framework (Definition4.2.1). MDP’s 
are mathematical tools for sequential decision making in a stochastic environment (White 
and White,1989) and form the underlying basis of the reinforcement learning framework, 
whereby an agent learns an optimal solution to a problem by interacting with an environ- 
ment through the use of actions (Sutton and Barto,2018). 

Definition 4.2.1. A Markov Decision Process is a tuple (S, A, Pa, Ra, γ) where: 

• S is a finite set of states 
 

• A is a finite set of actions 
 

• P is a transition probability matrix 
 

• R is a reward function 

• γ is a discount factor (γ ∈ [0, 1]) 

In this study, a set of actions is added to the model. Within an MDP framework, an 
action defines the choice made by an agent given the state (or environment) it observes 
(Sutton and Barto,2018). In rugby league, the actions are mostly movements of the ball 
performed by the players (e.g. pass, kick, run), but can also be defined as key moments in 
the game (e.g. winning a penalty, which can result in a longer attacking possession). The 
finite set of actions used in this study are described in Table4.1. 

The states, transition probability matrix and rewards were defined in Section3.2.3. 
Their representation within rugby league remains the same in this study: the location (or 
zone) on the pitch can still be considered the state; the transition probability matrix still 
represents the probability of moving between states, although it is now conditional on the 
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state, action tuple rather than just the state; and the reward can be defined as the points 
outcome achieved by the action in the team’s attacking possession. 

Recall from Definition3.2.2, the value function for a state. With the inclusion of 
actions within the MDP framework, the value function for each state, action pair must be 
updated as shown in Definition4.2.2. 

Definition 4.2.2. The state, action value function Q(s,a) for action a performed in state s 
can be defined as 

Q(s,a) = E[Gt|St = s, At = a], (4.1) 

where Q is the value function for choosing action a in state s. 

Alongside the inclusion of actions in the MDP, this study also includes context nodes, 
building on work previously conducted in ice hockey (Routley and Schulte,2015) and 
football (Decroos et al.,2019). Context nodes provide an additional level of detail sur- 
rounding the results of the analysis. In rugby league, they can provide information sur- 
rounding player ratings when a team is winning, drawing or losing, or in the first or second 
half of the match. Furthermore, by including the team as a context node, individual state, 
action values can be calculated for each team within the MDP framework. The updated 
value function for context c, state s, action a is provided in Definition4.2.3. 

Definition 4.2.3. The context, state, action value function Q(c,s,a) for action a performed 
in state s, in context c can be defined as 

 
Q(c,s,a) = E[Gt|Ct = c, St = s, At = a], (4.2) 

where Q is the value function for choosing action a in state s and context c. 

To solve the MDP, the Monte Carlo every visit algorithm was implemented. This 
algorithm was also used in Chapter3and justification is provided in Section3.2.3. The 
Monte Carlo every visit algorithm calculates the empirical mean of each state, action value 
by summing the discounted rewards accumulated and dividing by the total number of 
times the state, action pair is used. The algorithm allows every visit to every state, action 
pair to be valued rather than just the first occurrence within an episode. This is particularly 
important in rugby league as multiple actions regularly occur in similar locations or states 
as the defensive team attempts to stop the attacking team from progressing towards their 
try line. 
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k=0 

 
 
 

Algorithm 2 Monte Carlo Algorithm 
Input : Episode dataset, including state-action pairs and rewards, γ, empty returns list 

(Returns), empty counter list (Counter), empty Q-values list (Q) 
Output: Q, populated with results of MDP 

for episode do 
for timestep, t do 

Gt = 
L.∞

 γkRt+k+1 

 
 

end 
end 

Returns(s, a) = Returns(s, a) + Gt 
Counter(s, a) = Counter(s, a) + 1 

Returns(s,a) 
Counter(s,a) 

 
Recall Algorithm1, which provided the Monte Carlo every visit algorithm for state 

values. Pseudocode for Algorithm2shows the algorithm used to estimate the empirical 
mean return for each state, action tuple. Algorithm2extends the state value algorithm by 
ensuring that the episode returns and counter increments are added to the relevant state, 
action tuple in lines 4 and 5. The action value for each state, action pair Q(s,a) is calculated 
on line 8 using the relevant state, action data. 

The inclusion of context nodes in this study requires a further alteration to Algorithm 
2. Pseudocode for the Monte Carlo every visit algorithm simulating the empirical mean 
return for the context, state, action tuples is provided in Algorithm3. Algorithm3differs 
from Algorithm2at the first loop. Rather than looping through each episode irrespective 
of any contextual factors, the algorithm now loops through each episode in each context 
(lines 1 and 2). The modification in lines 5 and 6 ensures that there is an individual 
entry for each (s, a) pair in each context, which sums the returns, and counts the visits. 
Similarly, the addition of c to line 9 ensures that Q(c,s,a) is calculated using only the state, 
action pairs experienced within context c. 

In this study, the location of each action, binned into EPV-19 zones (Section3.3.1), 
was used as the state space for the MDP. The grouped actions identified in Table4.1were 
used for the action space. The rewards were calculated based on the points outcome of the 
action within the attacking possession: converted try scored (+6); unconverted try scored 
(+4); penalty goal scored (+2); drop goal scored (+1); loss of possession or missed goal 

Q(s,a) 
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Algorithm 3 Monte Carlo Algorithm 
 

Input : Episode dataset, including context (c), state-action (s, a) pairs and rewards, γ, 
empty returns list (Returns), empty counter list (Counter), empty Q-values list 
(Q) 

Output: Q, populated with results of MDP 

for context c do 
for episode do 

for timestep, t do 
Gt = 

L.∞
 γkRt+k+1 

 
 

end 
end 

Returns(c, s, a) = Returns(c, s, a) + Gt 
Counter(c, s, a) = Counter(c, s, a) + 1 

Returns(c,s,a) 
Counter(c,s,a) 

end 
 

 
attempt (0). For actions where none of these point scoring events occurred, a reward of 
0 was assigned. Each time-step within the attacking possession sequence was assigned 
a reward, so it was possible for a state, action tuple to receive multiple rewards if more 
than one action was completed in a given location within the same attacking possession. 
However, a point scoring reward was only obtained once per attacking possession. 

Four models were run to evaluate the impact of context nodes on Q(s,a): MDPnc has 
no context nodes; MDPperiod has period (1st half or 2nd half) as a context node; and 
MDPscore has match score (winning, drawing or losing) as a context node. These three 
models were used to evaluate player performances. A fourth model MDPteam used the 
attacking possession team as a context node to assess whether further insight into team 
attacking performances could be gleaned using the context nodes. Algorithm2was used 
to produce MDPnc, Algorithm3was used for MDP period, MDPscore and MDPteam. All the 
rewards obtained within the MDPs were directly related to the actual points scored in 
a rugby league match, so γ was calculated to minimise the difference between the sum 
of rewards obtained per team per match and the sum of Q-values obtained per team per 
average number of match possessions. This value was calculated for MDPnc and used for 
all four MDPs, resulting in a γ value of 0.63, which considers actions to be beneficial to 
the final reward in the medium term. 

Q(c,s,a) 
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4.2.4 Action Impact Ratings 

To evaluate player performances in rugby league, action impact ratings were adapted from 
previous research in ice hockey (Routley and Schulte,2015). Action impact ratings were 
calculated via Equation4.3. They provide a method of evaluating every action completed 
against the state value (the weighted average of all actions completed within the state). 
Ratings were provided using MDPnc, MDPperiod and MDPscore to evaluate whether further 
insight into player performances could be provided through the use of context nodes. 
Equation4.3is defined as 

impact(c,s,a) = Q(c,s,a) − V(c,s), (4.3) 
 

where Q(c,s,a) is the action value for action a in state s in context c and V(c,s) is the value 
of state s in context c. 

The action impact rating was calculated twice: once including goal kicks as part of the 
weighted average of actions within the state and once without them. The action impact 
ratings were summed per player to create a season total and normalised to the average 
number of actions completed within that context per match. By calculating the action 
impact ratings in this way, they represent the positive or negative impact a player’s actions 
have on the team’s expected points return above or below the average player’s contribution 
per match. 

 
4.2.5 Team State, Action Values 

To evaluate team performances, the team ID context node in MDPteam was used. Utilising 
context nodes in this manner allowed individual team state, action values to be produced. 
Comparing individual teams’ state action values provides a method through which team 
performances could be evaluated by identifying those teams who generated greater value 
from different actions in different states. To visualise the differences and identify tactical 
insights, the state, action values for five actions (catch, pass, run, positional kick and 
play-the-ball) were plotted. These five actions were chosen as at least one action was 
performed in every state for every team. Multiple missing states were present for the goal 
kick and penalty won actions. In the plots, all team state, action values were compared to 
the league average state, action value. Therefore, the plots detail whether the team was 
better or worse at performing a given action in a given state than the league average team. 
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4.3 Results 

The aim of this study was to evaluate player and team performances in rugby league 
using an MDP framework, which extended the MRP framework produced in Chapter3 
by adapting ideas previously considered in ice hockey (Routley and Schulte,2015). To 
achieve these aims, the 63 xml files provided by Opta from the 2020 Super League season 
were preprocessed into a single file of 77,045 rows and 9 columns (Table4.2). Using 
this data, four MDPs were produced: MDPnc, which had no context nodes; MDPperiod, 
which used period as a context node; MDPscore, which used match score as a context 
node; and MDPteam, which used team ID as a context node. Algorithm2was used for 
MDPnc; Algorithm3was used for MDP period, MDPscore and MDPteam models. The MDPnc, 
MDPperiod and MDPscore models were used to evaluate player performances via action 
impact ratings, adapted fromRoutley and Schulte(2015), with and without context nodes. 
MDPteam used context nodes to evaluate individual team attacking performances. 

 
4.3.1 Evaluation of Player Performances 

To evaluate player performances in rugby league, the MRP approach used in Chapter3 
was extended to form an MDP framework. Three MDPs were produced: MDPnc (no 
context nodes), MDPperiod (period as a context node) and MDPscore (match score as a 
context node). Figure4.3depicts the variation in action values for each action across all 
states and contexts, including outlying values (i.e. those more than 1.5*interquartile range 
beyond the upper quartile). With the exception of the play-the-ball (PTB) outlier in Figure 
4.3B, all outlying state, action pairs were visited on less than 100 occasions, indicating 
that the models may not have fully converged with the limited dataset available. 

It is clear from comparing the box plots in Figure4.3that goal kicks are generally 
much more valuable than any other action. This is not surprising as a goal kick is almost 
always the last action of a possession, whereas catches, passes and runs happen on a much 
more frequent basis within possessions and so are likely to receive less value when the 
rewards obtained are averaged out. However, the greater value provided by goal kicks 
relative to other actions could skew the player ratings unfairly in favour of the limited 
number of players who kick at goal. Therefore, two separate action impact ratings are 
calculated: one including goal kicks and one removing them. 
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Figure 4.3: Boxplot showing variation in action values for each action across the 19 states 
with no context nodes included (A), period as context (B) and match score as context 
(C)). Circles depict outliers, calculated as those values more than 1.5*interquartile range 
beyond the upper quartile. 

 
 

4.3.1.1 Action Impact Ratings 

To evaluate player performances, action impact ratings adapted fromRoutley and Schulte 
(2015) were used. These ratings were calculated using Equation4.3and compare the 
value of the actions taken by a player to the weighted average of all possible actions in 
the state (i.e. the state value). Table4.3provides the top 20 rated players in the Super 
League 2020 season as rated by MDPnc with goal kicks included. Table4.5provides 
the ratings from the same model with goal kick actions excluded. Both tables provide 
statistics for tries, try assists, metres gained and goals scored as references for the data 
currently available to value players in rugby league. 

The difference in players’ rankings in the rating tables when goal kicks are included 
or removed shows the disproportionate impact of goal kicks on the results. For example, 
players 10457, 10625, 10107 and 6335 all fall outside of the top 100 best players when 
the value of their goal kicks (3 of the 4 players were in the top 5 goal kickers in 2019) is 
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Table 4.3: Top 20 normalised player action impact ratings for the 2020 Super League sea- 
son, including goal kicks. Tries, Try Assists, Metres and Goals are provided as references 
of statistics currently provided for player performances. To protect anonymity, reference 
statistics are provided based on the whole season as: T-5 (top 5); T-10 (top 10), T-20 (top 
20) and 20+ (outside top 20). Players completed a minimum of 150 actions across the 
season. Player ID brackets provide position in the table when goal kicks are not included 
in the action impact rating. 

 
 
 

Player ID Position Action Impact Tries Try Assists Metres Goals 
21721 (1) Winger 1.259 T-5 20+ 20+ 20+ 
2737 (8) Centre 1.126 T-10 20+ 20+ T-10 
23232 (2) Winger 0.980 20+ 20+ 20+ 20+ 
21082 (3) Prop 0.824 20+ 20+ 20+ 20+ 
11352 (4) Winger 0.794 20+ 20+ 20+ 20+ 
10665 (5) Winger 0.655 20+ 20+ T-10 20+ 
10167 (7) Winger 0.609 T-20 20+ T-10 20+ 
24400 (6) Centre 0.608 20+ 20+ 20+ 20+ 

10457 (110) Full Back 0.597 20+ 20+ 20+ 20+ 
21286 (9) Winger 0.584 T-20 20+ 20+ 20+ 
22557 (10) Winger 0.584 20+ 20+ 20+ 20+ 

10625 (118) Scrum Half 0.560 20+ 20+ 20+ T-5 
10107 (125) Full Back 0.540 T-20 T-5 20+ T-5 
20858 (11) Winger 0.538 T-20 20+ 20+ 20+ 
21479 (12) Winger 0.533 T-5 20+ T-5 20+ 
21425 (14) Centre 0.518 20+ 20+ 20+ 20+ 
3246 (16) Winger 0.516 20+ 20+ T-10 T-20 

6335 (116) Scrum Half 0.495 20+ 20+ 20+ T-5 
20990 (13) Second Row 0.479 20+ 20+ 20+ 20+ 
10123 (15) Winger 0.473 20+ 20+ 20+ 20+ 

 
 
 

removed from their ratings. However, it should be noted that Player 10107 was nominated 
for the best player of the year award so it’s reasonable to argue that he should be in the 
top 20 players with or without goal kicks included. 

It is notable that the majority of highly rated players when goal kicks were removed 
were wingers, centres or props. In rugby league, wingers are typically known for scoring 
tries. They are expected to occupy wide areas to receive the ball and run with it (Table 
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2.3). Both of these elements are highly valued by the model (Figure4.3) so it is unsur- 
prising that these players have high action impact ratings. The three centres included 
within the top 15 players also provide significant support for the model’s usefulness as 
two were included in the Super League 2020 Team of the Year and one was voted as the 
Young Player of the Year. This is despite two of the centres having relatively poor try, try 
assist, metre and goal statistics. The high rating of player 21082 is somewhat surprising 
as player 20567 is widely regarded to be a better player, as shown by his better reference 
statistics, but can possibly be explained by player 21082’s season consisting of 156 ac- 
tions (only just above the 150 action threshold for inclusion), compared to player 20567’s 
395 actions from the same position. 

 
4.3.1.2 Contextual Insights 

Alongside MDPnc, which evaluated player performances using all data from the 2020 
Super League season, MDPperiod and MDPscore were used to assess the context nodes’ 
ability to provide further insights into player performances. The benefit of using these 
nodes is shown by evaluating the five players nominated for the Man of Steel award, 
given to the best player in the Super League in 2020. It is noted that none of these players 
are included in the top 20 best players according to the action impact ratings, which 
is a limitation of the model. Table4.7provides the action impact ratings for the five 
nominated players across the contextual factors used within this study. It clearly shows 
differences in the action impact ratings between and within players as the context changes. 
For example, all players except player 2805 show a reduction in action impact rating in 
the second half compared to the first. Such a rating provides tactical insight that player 
2805 is particularly dangerous in the second half of matches. Similarly, player 2228 and 
player 10107 are better performers when their team is losing, than when their team is 
winning. Opposition teams should therefore be aware of this when facing these players’ 
respective teams. 

 
4.3.2 Evaluation of Team Performances 

To evaluate team performances, the use of context nodes was extended with MDPteam, 
which used the team ID as the context node to provide individualised team state, action 
values. The individualised state, action values can be used to gain insight into the value 
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Table 4.5: Top 20 normalised player action impact ratings for the 2020 Super League 
season, not including goal kicks. Tries, Try Assists, Metres and Goals are provided as 
references of statistics currently provided for player performances. To protect anonymity, 
reference statistics are provided based on the whole season as: T-5 (top 5); T-10 (top 10), 
T-20 (top 20) and 20+ (outside top 20). Players completed a minimum of 150 actions 
across the season. Player names are anonymised, brackets provide position in the table 
when goal kicks are included in the action impact rating 

 
 
 

Player ID Position Action Impact Tries Try Assists Metres Goals 
21721 (1) Winger 1.280 T-5 20+ 20+ 20+ 
23232 (3) Winger 0.994 20+ 20+ 20+ 20+ 
21082 (4) Prop 0.883 20+ 20+ 20+ 20+ 
11352 (5) Winger 0.813 20+ 20+ 20+ 20+ 
10665 (6) Winger 0.671 20+ 20+ T-10 20+ 
24400 (8) Centre 0.645 20+ 20+ 20+ 20+ 
10167 (7) Winger 0.625 T-20 20+ T-10 20+ 
2737 (2) Centre 0.611 T-10 20+ 20+ T-10 

21286 (10) Winger 0.606 T-20 20+ 20+ 20+ 
22557 (11) Winger 0.600 20+ 20+ 20+ 20+ 
20858 (14) Winger 0.556 T-20 20+ 20+ 20+ 
21479 (15) Winger 0.552 T-5 20+ T-5 20+ 
20990 (19) Second Row 0.550 20+ 20+ 20+ 20+ 
21425 (16) Centre 0.542 20+ 20+ 20+ 20+ 
10123 (20) Winger 0.502 20+ 20+ 20+ 20+ 
3246 (17) Winger 0.499 20+ 20+ T-10 T-20 
20567 (27) Prop 0.495 T-10 20+ T-5 20+ 
20940 (21) Winger 0.490 20+ 20+ 20+ 20+ 
2163 (26) Second Row 0.486 20+ 20+ 20+ 20+ 
20666 (22) Winger 0.477 20+ 20+ 20+ 20+ 

 
 
 

generated by different teams. Figures4.4(Hull) and4.5(St Helens) provide two examples 
of this as the plots provide extremely interesting and contrasting insights regarding the 
value generated by the two teams. For example, Hull show a clear area of increased value 
relative to the league average team when performing positional kicks in central areas 
close to the opposition try line. Furthermore, they generate more value when catching 
in areas away from the centre of the pitch. Combining these two results suggests that 



4.3 Results 

104 

 

 

 
 

Table 4.7: Contextual action impact ratings for players nominated for Man of Steel award. 
Player names are anonymised. 

 
 

Player Name 1st Half 2nd Half Winning Drawing Losing 
20441 1.860 1.430 1.330 0.800 1.020 
21560 1.260 1.080 1.110 0.434 0.714 
10107 1.220 1.040 0.799 0.435 0.939 
2228 1.100 0.806 0.430 0.616 0.867 
2805 0.875 1.030 0.784 0.591 0.554 

 
 

Hull may have been particularly adept at kicking from central areas to the outer part 
of the opposition try line. Conversely, St Helens were generally poor at kicking and 
catching centrally within 30m of the opposition try line. Instead, they were much better 
than the league average team at passing and running in areas close to the opposition try 
line, particularly out wide. That the model can differentiate between these two different 
styles of play is extremely valuable for a coach devising tactical strategies against future 
opponents. 

The results of the study were presented to the Leeds Beckett University Sports Sci- 
ence Department for feedback. The results of the individualised team, state action values 
received significant praise in terms of usability and reliability based on the information 
that was provided and the accuracy and simplicity with which it was depicted. The action 
impact ratings were treated more sceptically. Although there were some success stories 
and some of the younger players in the top 20 ratings went on to further success the fol- 
lowing year, the feedback from the department was that the action impact ratings may 
have rewarded attempting to perform a high value action irrespective of its success. It 
was suggested a better method may be to reward the outcome of the action, rather than 
its expected value. This may provide a better indication of those players who are better at 
performing these high value actions successfully. 

All analyses for this study were conducted using bespoke Python scripts (Python 3.7, 
Python Software Foundation, Delawere, USA). The analyses were completed using a HP- 
Pavilion Laptop with an Intel Core i5-8250U 1.60 GHz processor and 8GB RAM. The 
Monte Carlo every visit algorithms used to estimate action values were timed at: 15.23s 
for MDPnc; 14.06s for period; 13.33s for MDPscore; and 11.29s for MDPteam. 
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Figure 4.4: Team state, action value plot for Hull. All state, action values are centred by 
the league average value. Green values indicate team is better at the action in a specific 
state than the league average team; red indicate the team is worse. 

 
 

4.4 Summary 

This study extended the work conducted in Chapter3, adapting ideas previously used in 
ice hockey (Routley and Schulte,2015) and football (Decroos et al.,2019;Singh,n.d.) 
to produce a framework through which player and team performances could be evalu- 
ated in rugby league using MDPs. It was possible to develop an MDP framework in this 
study because action by action data became available, rather than the play by play data 
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Figure 4.5: Team state, action value plot for St Helens. All state, action values are centred 
by the league average value. Green values indicate team is better at the action in a specific 
state than the league average team; red indicate the team is worse. 

 
 

available in Chapter3. Therefore, it was the first study in rugby league to attempt to 
evaluate player and team performances using action by action data. Four MDPs were 
produced: MDPnc, MDPperiod, MDPscore and MDPteam. Action impact ratings, previously 
developed in ice hockey (Routley and Schulte,2015), were shown to be reasonably suc- 
cessful at rating player performances compared to traditional statistics. Context nodes 
were shown to provide good insight into player performances when different scenarios 
(e.g. winning/losing and 1st/2nd half) were considered. The context nodes were also used 
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to provide individual state, action values for each team providing excellent insights into 
tactical differences between teams. Practitioners can use the player performance insights 
for recruitment purposes and the team performance insights to develop tactical strategies 
against future opponents. 

The work was presented at the UKCI conference and subsequently published in Ad- 
vances in Computational Intelligence Systems. It was presented internally to the Sports 
Science department at Leeds Beckett University, where it was positively received. The 
team performance insights were highly praised in terms of both usability and reliabil- 
ity. However, the player player performance insights’ reliability was questioned as it was 
suggested that the action impact rating provided slightly indifferent results because it re- 
warded attempting high value actions rather than considering the outcome of the actions. 
To remedy this, the department suggested that a future performance rating should consider 
some form of actual vs expected possession outcome measure. 

Given its success at a team level, future studies may now wish to apply these methods 
to other sports. Doing so would require a two-step process: first, the most appropriate 
zone size should be chosen based on a criterion measure appropriate for the sport, similar 
to Chapter3; second, a useful set of actions should be included so that their values can 
be considered. The methods considered in both chapters should be useful in any sport 
which takes place on a pitch or court. For example, similar methods have already been 
considered in football (Singh,n.d.) and ice hockey (Routley and Schulte,2015). There 
is also scope for the model to be used in individual sports, such as tennis, where the 
probability of winning a point based on performing different shots from different locations 
could be considered. 

In addition to the action impact rating critique, there are a number of reasons why 
the player performance ratings may have provided mixed results. The first is that all 
defensive actions were removed from the model, which may have stopped players who 
were good defenders from being rated highly. The second is that the model values point 
scoring actions (goal kicks and runs) disproportionately higher than all other actions, 
which unduly rewards those players who attempt these actions more regularly. Finally, 
it could be that the zones used in this study are too large for meaningful differences to 
be identified. This limitation could also relate to the team performances as no major 
differences were identified between any team and the league average model when they 
were more than 30m away from the opposition try line. A likely reason for this is the size 
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of the zones - the middle zone is 60m long, with every location in the zone receiving the 
same value, which means a player or team can progress 59m closer to the opposition try 
line and receive no value for it under the current framework. Such a situation is obviously 
not realistic and so a method which produces a smoother surface than the dichotomous 
zoning approach currently used in rugby league is required. 

As a result of these limitations, it is necessary to move away from the zonal approaches 
considered in the previous two chapters as it is clear that it would prove difficult to provide 
results that could be fully validated as usable and reliable by practitioners. Instead, the 
next study will attempt to provide a smooth surface. Doing so will mean that an MDP 
approach is no longer viable. Therefore, as a prototype for further analysis, the research 
question will be simplified to consider the probability a team will control the ball in a 
given location, rather than attempting to estimate the expected value conditional on the 
location or location, action tuple. 
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Chapter 5  
Kernel Density Estimation and 
Wasserstein Distance Evaluation of the 
Spatial Trends of Team Attacking 
Performances 

 
5.1 Introduction 

In the previous study (Chapter4), the limitations of using a zonal approach to evaluate 
player and team performances in rugby league were highlighted. The most prominent of 
these issues was the size of the zones, which meant a player could run more than 50m 
towards the opposition try line but not receive a positive rating if he remained within the 
same zone. This issue was not prevalent in basketball or football, as their zones were much 
smaller (Cervone et al.,2016;Singh,n.d.), but significantly reduces the validity of the re- 
sults in rugby league. A logical solution to the zone size problem is to try and calculate a 
smooth surface, as has been achieved in previous deep learning (Fernández et al.,2021) 
and deep reinforcement learning models (Liu et al.,2020). Unfortunately, it is not possi- 
ble to produce such complicated models in rugby league due to data availability issues. 
Therefore, this study takes the first step towards analysing player and team performances 
in a smooth manner by simplifying the problem of evaluating team performances. Rather 
than considering the value of an action conditional on its location, this study considers 
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the probability of a team controlling the ball in a given location. The spatial trends of 
team attacking performances are quantified by adapting the methods ofMallepalle et al. 
(2020) in rugby league. The work ofMallepalle et al.(2020) is then extended through 
the proposition of novel metrics, which evaluate differences in spatial trends of attack- 
ing performances between and within teams. The study was presented at the UKCI 2022 
conference (Thomas Sawczuk, Anna Palczewska, Ben Jones, Jan Palczewski. ”Use of 
Kernel Density Estimation to understand the spatial trends of attacking possessions in 
rugby league” in 21st UK Workshop on Computational Intelligence, Sheffield, 2022) and 
will be published in Advances in Computational Intelligence Systems. It was also pre- 
sented to coaches at Leeds Rhinos, a professional rugby league team competing in the 
Super League, who validated the reliability and usability of the results. 

 
5.2 Methodology 

In this section, the methodology for the study is described. It describes the data and data 
preprocessing steps required to prepare the data for analysis. Kernel Density Estima- 
tion and the Wasserstein Distance are presented and their adaptation to rugby league is 
outlined. Novel metrics evaluating the spatial trends of team attacking performances in 
this study (normalised axis Wasserstein distance and directional Wasserstein distance) are 
formalised. 

 
5.2.1 Data 

In this study, event level match-play data were obtained from Opta (Stats Perform, Lon- 
don, UK) for the 2021 Super League season. The data was produced via human annotation 
of the actions taking place and was downloaded from www.optaprorugby.com. In 2021, 
Opta again improved their coding protocols. Deviating from their previous methods, the 
company provided 20 categories of actions, 96 actions and 446 additional action descrip- 
tors, describing the type of action and its outcome. Table5.1provides an example of the 
actions and descriptors used for the passing category. AppendixCis the user manual pro- 
vided by Opta, where definitions of the actions and their coding criteria can be viewed. 
The data for each match was provided in separate xml files, but the play-the-ball node 
was dropped in 2021, so the data was provided using three nodes: match data; team data; 

http://www.optaprorugby.com/
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Table 5.1: Passing example to show the action definitions utilised by Opta in 2021 
 
 

Level Options 
 

Category Passing 
Action  Short; Out the back; Face ball; Offload; Dummy Pass 

Action Descriptor Effective; Ineffective; Off Target; Turnover; Left; Right 
 

 
 

and fixture data. The definitions of the three nodes remained the same as previous years 
(Table3.1). 

In Chapter3the data provided by Opta were introduced. As with Chapters3and4, 13 
of the 28 variables provided by Opta were considered within this study. These were: ID, 
FXID, PLID, team id, MatchTime, x coord, y coord, action, ActionType, Actionresult, 
Metres, PlayNum and SetNum. Table3.2defines these variables. Similar to the 2020 
dataset used in Chapter4, location data was available on an action by action basis. Con- 
trary to the 2020 dataset, a much greater number of actions were coded across the season, 
including supporting runs, a greater variety of defensive actions and more miscellaneous 
data. 

In the 2021 Super League season, 138 matches were contested by 12 teams and 373 
players. A total of 557,050 match actions were completed (median 4003 events per match, 
interquartile range 3857-4200). Across the season, 1001 tries were scored (768 successful 
conversion kicks, 233 unsuccessful conversion kicks), 175 penalty goals were attempted 
(158 successful, 17 unsuccessful) and 83 drop goals were attempted (37 successful, 46 
unsuccessful). 

 
5.2.2 Data Preprocessing 

Figure5.1provides an overview of the data preprocessing completed within this study. 
The preprocessing steps converted the 138 raw xml files described above to a single file 
of 99,966 rows and 4 columns ready for analysis. Full details of each preprocessing step 
are provided below. 

The match action data, provided in 138 xml files, were collected and integrated into a 
single dataset of 557,050 rows and 28 columns. To do this, the match data node variables 
were extracted from each xml file into separate tables and then concatenated together. 
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Figure 5.1: Data preprocessing workflow 
 
 

The team data nodes were also extracted into tables for each fixture. These were used to 
map team unique identifiers to the real team name. Similarly, Opta’s action definitions 
and unique identifiers (AppendixC) were mapped to the real name of the coded actions. 

Within the 2021 dataset, 126 unique actions (i.e. different combinations of actions 
and action descriptors) were coded. For the purposes of this study, these actions were 
regrouped into 23 preprocessing categories. These preprocessing categories were used to 
assist with the preprocessing steps, but were not required for the location based analy- 
sis described in Section5.2.3. A full list of the actions included in each preprocessing 
category is provided in Table5.2.2. 
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Table 5.2: Preprocessing categories and actions included within them in this study 
 

Category Events 
 

Auxiliary Information Front Marker, Back Marker, Video Ref, Interchange, 
HIA, Stoppage 

Generic Descriptor Other Error, Try cause, Line Break Involvement, Line 
Break Assist, Break Cause, Tackle Break, Opp Error, 
Passing Move, Close Range, Error, Try Involvement, 
Long Range, Individual Effort, Other, Sin Bin Out, 
Yellow, Sin Bin Return To Field, Grounding, Contest, 
Sent Off Out, Red, Touchline/Deadball, Onside, On 
Report 

Restart Actions 50m Restart, Goal Line Drop Out, 20m Restart 
Move Self Restart Run, Evasion, Hitup, Kick Return, Line En- 

gaged, Ruck Run, Dummy Half, Run, Line Not En- 
gaged 

Move Team Complete, Short - Crossfield, Short - Grubber, Own 
Player, Break, Short - Banana, To Ground, Short - 
Bomb, Short - Chip, Try 

Kick Goal Conversion, Penalty Goal, Field Goal 
Kick Position Long - To Opposition, Good, Long - To Open, Long - 

40-20, Long - Touch 
Catch Pass Simple Receipt, Jump Catch 
Catch Kick Kick Receipt, Restart Receipt 
Loose Ball Defensive Cleanup, Attacking Cleanup, Attempted 

Intercept, Contestable Cleanup, Interception 
Tackle Made, Dominant, Offload To Ground, Turnover Ball 

Split, Forced Within In Goal, Stolen, Turnover Into 
Touch, Offload 

Missed Tackle Bumped Off, Stepped, Positional, Outpaced, Try 
Conceded 

Run Action Dummy Pass, Half Break, Line Break, Carried Dead 
Ball, Forced Into In Goal, Carried In Touch 
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Play-The-Ball Lost, Won, Interrupted 
Attacking Descriptor Kick Line Break, Try Assist, From Kick, From 

Penalty, From Line 
Defensive Descriptor Kick Pressure 
Move Self Error Dropped Ball Unforced, Ball Jolted, Lost Ball Forced 
Move Team Error Not Out, Failure To Find Touch, Incomplete, Off Tar- 

get, Forward Pass, Forward, Kick Error, Bad Offload, 
To Opposition, Bad Pass, PTB Fumble, Intercepted 

Catch Error Accidental Knock On, Falcon 
Penalty Conceded Defence, Penalty, Inside 10m, Attack, Ruck Infringe- 

ment, Foul Play, Double Movement, Obstruction 
Defensive Play Flop, Kick Not Defused, Kick Defused, Charge 

Down, Attempted Steal 
Off The Ball Decoy, Support Run, Kick Shield, Kick Shepherd, 

Kick Chase 
 
 
 

Although the type of action completed was not in itself important for this study, the 
information it provided was important for the purposes of preprocessing. To prepare the 
data for the analysis of the spatial trends of team attacking performances, only actions 
completed by the team in possession of the ball were required. In order to prevent multi- 
ple codings being present for the same action, a subset of the action categories described 
in Table5.2.2was considered: “move team”; “move self”; “catch kick”; “kick position”; 
“move team error”; “move self error”; “loose ball” and “kick goal”. This filtering was 
necessary as a player completing a “move self” action could also be given a “run action” 
descriptor if they ran past an opponent, thus providing two entries for the same action. 
Filtering the actions in this manner immediately reduced the dataset from 557,050 obser- 
vations to 128,716 observations. Incomplete actions were only included if they caused 
the end of a possession. For example, an unsuccessful attempt at a loose ball collection 
or an unsuccessful attempt to intercept a pass by the defensive team were not included 
as these actions were not completed and including them would have unduly affected the 
chain of possession. However, an unsuccessful pass, or a dropped catch from a pass 
by the attacking team were included as these actions resulted in a change in the chain 
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Figure 5.2: Location of 99,966 actions used in this study. Dots representative of location 
only; quantity of actions at each location is not displayed in this plot. 

 
of possession. Incomplete actions were identified if the team id variable changed for 
the subsequent action. Their removal reduced the size of the dataset by 1122 actions to 
127,594 observations. 

Similar to multiple action codings, it was important for this location based analysis 
that locations were not coded on more than one occasion for different actions completed 
within the same sequence. For example, if a player caught the ball and decided to run in 
the same location, Opta would code each action as an individual observation. Multiple 
location codings were identified when the location and player variables were identical 
on consecutive rows. For this study, because the action chosen was not important to 
the location based analysis, the second observation of each multiple location coding was 
removed from the dataset indiscriminately. Removing these duplicate location actions 
resulted in a final dataset size of 99,966 actions. 

Unlike Chapters3and4, which used zone based approaches, the   x, y coordinates 



5.2 Methodology 

116 

 

 

 
 

Table 5.3: Sample possession within the dataset 
 
 

Attacking Team Defending Team x y 
St Helens Salford 9 4 
St Helens Salford 9 6 
St Helens Salford 14 11 
St Helens Salford 22 13 
St Helens Salford 12 12 
St Helens Salford 37 16 
St Helens Salford 36 24 
St Helens Salford 54 35 

 

Table 5.4: Descriptive data for action counts in the data subsets. IQR is interquartile 
range; Min/Max refers to minimum/maximum number of observations observed. 

 
 

Level Subsets Median IQR Min/Max 
Whole league 1 99,966   

Team overall 12 8105 7596-8937 7203/10324 
Team-opponent 132 732 622-858 277/1551 

 
 

provided by Opta were directly modelled in this study. In 2021, the x, y location was 
denoted relative to a standardised 100m x 70m rugby league pitch, rather than the 100m 
x 68m pitch used in Chapters3and4. Actions occurring outside the 0-100m pitch are 
located in the possession team’s try area (0 to −10m) or the opposition team’s try area 
(100 to 110m). Figure5.2shows the locations of the 99,966 actions used in this study. 

After completing the preprocessing steps, the dataset was filtered to include only the 
columns required for analysis. As such, the 138 individual xml files were preprocessed 
into a single dataframe of 99,966 rows and 4 columns. Table5.3provides a sample of 
the data used for analysis. The inclusion of the attacking and defending teams in the 
final dataset was important to allow for comparisons in the spatial trends of attacking 
performances between and within teams to be made. 

Three levels of data were used in this study. The whole league data used the complete 
set of data. The team overall data used a subset of data for a single team controlling the 
ball against any opponent (i.e. using all data for the attacking team). The team-opponent 
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Figure 5.3: Workflow of analyses conducted within this study 

 
data used a subset of the data, which contained actions for a single team controlling the 
ball (i.e. attacking) against a specific opponent (identified using the attacking team and 
defending team columns). There were 12 team overall data subsets (one for each team) 
and 132 team-opponent data subsets (one for each team-opponent combination). Table 
5.4provides descriptive data for the three levels of analysis. It shows that the greater the 
number of subsets produced, the smaller the number of actions included. Furthermore, 
there is greater variation in the size of the subsets when more are used, which can be 
attributed to the varied number of matches played against different opponents in the 2021 
season. 

 
5.2.3 Kernel Density Estimation 

The aim of this study was to present a method of evaluating the differences in spatial 
trends of team attacking performances in rugby league by adapting, validating and ex- 
tending the methods used byMallepalle et al.(2020) in American football. Figure5.3 
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provides a schematic of the analyses conducted in this study. 
Kernel Density Estimation (KDE), described in Definition5.2.1, provides a method 

through which data can be smoothed using kernel smoothing. It allows inferences about 
the population to be made based on a finite data sample. KDEs were used byMallepalle 
et al.(2020) to quantify pass probability distributions for quarterbacks in American foot- 
ball. In this study, KDEs are used to quantify the spatial trends of team attacking perfor- 
mances. 

Definition 5.2.1. Kernel Density Estimation (KDE) is a non-parametric method of es- 
timating the unknown probability density function of a dataset (Rosenblatt,1956). The 
bivariate KDE (fˆH ) of a sample of 2-dimensional vectors (x⃗i )n is defined as 

 

fˆH 
n 

(x⃗) = KH 
n 

i=1 

(x⃗ − ⃗xi), (5.1) 

 

where KH is the kernel with a 2×2 smoothing matrix H and (x⃗i )n are vectors containing 
the x and y co-ordinates of action locations. 

Multiple kernel options are available for KDEs including: uniform, triangular, normal, 
Epanechnikov and cosineWand and Jones(1995). The standard bivariate normal kernel 
is used in this study: 

Kh(x⃗) = (2πh)−1e 
2 

2h , (5.2) 

where ∥ x⃗ ∥  is the Euclidean norm of ⃗x .  This corresponds to a diagonal smoothing matrix 
with the same smoothing constant h (the bandwidth) in both directions. 

Previous studies have considered other approaches to the smoothing matrix, including 
adaptive values (Fleming et al.,2015), mixture values (Lichman and Smyth,2014) and 
self selected values based on neighbourhood service radii (King et al.,2016). In this 
exploratory study, a diagonal smoothing matrix was deemed to be most appropriate as 
it assumed that a location has an equal influence on all locations surrounding it. Given 
previous zonal approaches in sport assume that all locations within the zone are identical 
(Chapters3and4;Cervone et al.(2016);Kempton et al.(2016)), it is a logical next step 
to assume that a specific location has equal influence on all surrounding locations. 

The most important free parameter within KDE is the bandwidth (Chen,2015). The 
bandwidth parameter influences the smoothness of the KDE model and controls “over- 
fitting” by establishing the amount of data smoothed at every point. Smaller bandwidth 
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values result in a more jagged appearance with larger peaks and troughs, whereas larger 
values result in a much smoother appearance with smaller peaks. Typically, as the size 
of the dataset increases, the optimal bandwidth size reduces (Zambom and Dias,2012). 
Consequently, bandwidths can be calculated individually for each subset of data to en- 
sure that the best possible fit to each subset’s data is obtained. This method was used 
byMallepalle et al.(2020) when evaluating quarterback pass probability distributions. 
However, individually calculating bandwidths can cause issues when directly comparing 
differences between KDEs as the use of different bandwidths can result in artificial dif- 
ferences being observed (Bowman,1984). Therefore, a single bandwidth was used across 
all 145 data subsets in this study so that team KDEs could be compared directly. 

Given its importance to the estimates provided by KDE, numerous methods have been 
identified through which the optimal bandwidth can be selected, including: visual in- 
spection; fitting to a reference distribution (Scott,2015;Silverman,1986); estimation to 
minimise the mean integrated square error (Park and Marron,1990;Sheather and Jones, 
1991); and cross validation (Bowman,1984;Marron,1989;Stone,1984). Contrary to 
the assumptions underlying some of these approaches, the rugby league data used in this 
study is auto-correlated as locations of consecutive actions in a play are not independent. 
The effect of auto-correlation on optimal bandwidth selection is shown byFleming et al. 
(2015) in their framework of minimising the mean integrated square error for a Gaussian 
reference distribution. Their method performs particularly well in the study of highly cor- 
related animal location data. However, the stretches of correlated locations in this rugby 
league dataset are relatively short and of varying length, so the approach ofFleming et al. 
(2015) with a reference Gaussian distribution would not offer an improvement over a 
cross validation approach which is distribution-free. Furthermore, it has been suggested 
that a cross validation approach is more responsive to the different sample sizes encoun- 
tered within this study (Table5.4;Zambom and Dias(2012)). As such, a likelihood cross 
validation approach to bandwidth selection was utilised. Denoting by Xj the data left out 
in j-th fold, the likelihood cross-validation (CV) for a bandwidth h is calculated by 

 

j 

CV(h) = j−1 log fˆh,−j (x⃗), (5.3) 
j=1 x⃗∈Xj 

 

where j refers to the number of folds (10 in this case) and fˆh,−j is the kernel density 
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estimate using bandwidth h and without data Xj. 
The bandwidth for the KDEs was chosen via a two stage process, similar to a previous 

study comparing the length frequencies of fish species (Langlois et al.,2012). First, the 
optimal bandwidths for the 132 subsets on the team-opponent level were identified using 
10-fold cross validation. The team-opponent level was chosen for this stage because it 
represented the lowest level of data and would therefore provide a bandwidth which could 
be used to generate smooth results for all higher levels of data. If the top level of data 
(i.e., the whole league) had been used, the bandwidth obtained would have been too small 
for other levels to obtain usable results (Zambom and Dias,2012). Second, the geometric 
mean of the 132 team-opponent bandwidths was calculated; this resulted in a bandwidth 
equal to 4.10. A bandwidth of 4.10 suggests that locations are predominantly influenced 
by areas within 10m of them, which is congruent with the zone sizes initially suggested 
in the rugby league literature (Kempton et al.,2016). All 145 KDEs were re-run at this 
empirically identified bandwidth 4.10, ensuring that the under and overfitting issues which 
could be present due to using the same bandwidth for all analyses were minimised across 
all subsets of data (Bowman,1984). 

 
5.2.4 Wasserstein Distance 

To extend the work ofMallepalle et al.(2020), two novel metrics of quantifying dif- 
ferences in the spatial trends of attacking performances between and within teams were 
produced. In Section3.2.4.1, the differences in the discrete EPV distributions for a set of 
previous matches and the subsequent match were calculated using the KL Divergence. By 
considering the x, y pitch coordinates in a smooth manner in this study, it is now possible 
to use the Wasserstein distance (Dobrushin,1970;Panaretos and Zemel,2019) to quantify 
differences in the spatial trends of attacking performances between and within teams. 

The Wasserstein distance is a more appropriate measure than the KL Divergence 
because it considers the size and distance of differences between the two distributions, 
whereas the KL Divergence only considers the size of the differences. In practice, this 
means that if an equal mass difference is distanced 10m or 100m apart, the KL Diver- 
gence will return the same value. Conversely, a much larger value is provided by the 
Wasserstein distance for the 100m movement of mass compared to the 10m movement. 
The difference in the Wasserstein distance for these two mass movements is dictated by 
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the cost function. 
The p-Wasserstein distance (Wp) between two distributions µ and ν is calculated as 

 

Wp(µ, ν) = 

 

inf 
γ∈Γ(µ,ν) 

Z

M×M 

 
∥z − z′∥pγ(dz, dz′) 

 
 

1 
 

, (5.4) 
 

where M is a 2-dimensional space of coordinates on the pitch, p ≥ 1, ∥(x, y)∥p = (|x|p + 
|y|p)1/p is the Lp norm1 (the cost function) and Γ(µ, ν) is the set of all couplings of 
distributions µ and ν, i.e., the set of all joint probability distributions on M × M with 
marginals µ and ν. 

The p-Wasserstein distance is closely related to optimal transport planning (Villani, 
2003). The optimal transport plan describes the movement of mass from distribution µ to 
distribution ν with minimal cost, subject to a cost function, c(z, z′) 1→ [0, ∞). The Wp 
Wasserstein distance is the total cost of all mass movements described by this transport 
plan, subject to the Lp norm cost function. This relationship between the Wasserstein 
distance, cost function and transport plan means that axis (e.g. x, y) and directional (e.g. 
left, right and up, down) mass transport measurements could be provided by manipulating 
the cost function or extracting information from the transport plan; with a slight abuse 
of terminology, these measurements will be termed Wasserstein distances in this study. 
These variations of the Wasserstein distance could provide much greater insights into the 
spatial trends of attacking performances in rugby league than using a standard Lp norm 
cost function. 

To evaluate differences in the spatial trends of attacking performances between teams, 
team overall KDEs were compared to the whole league KDE. This analysis evaluated 
how similar or dissimilar the team’s overall distribution of actions was to the league av- 
erage distribution. Larger Wasserstein distance values denoted larger differences, either 
due to the size of the difference, the distance involved in the difference or both factors. 
The within team analysis was completed by comparing team-opponent KDEs to the team 
overall KDEs (e.g. Wigan vs St Helens would be compared to Wigan’s team overall 
KDE; Catalans vs Leeds would be compared to Catalans’ team overall KDE). This analy- 
sis evaluated the similarity between the distribution for the attacking team against a single 
opponent and the distribution for the attacking team against all opponents. 

As with KDE bandwidth selection in Section5.2.3, an empirical approach was em- 
 

1L1 norm is sometimes called Manhattan norm and L2 norm is the Euclidean norm. 

  
p 
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Figure 5.4: Standardised, unweighted Wasserstein metrics for p = 1 (left), p = 2 (centre) 
and p = 3 (right). Distances are calculated from central point. 

 
ployed to select the Wasserstein distance cost function. Three cost functions (p = 1, 
p = 2 and p = 3 in Equation5.4; Figure5.4) were evaluated at the between team level 
(i.e. using the team overall KDEs), providing W1, W2 and W3 values. The cost of moving 
one unit in the horizontal and vertical directions is identical for all three cost functions but 
the diagonal cost differs based on the p-norm used. The diagonal cost of mass movement, 
imposed by the Lp norm cost function, was greater in W1 than W2 (by the exponent 2) and 
W3 (by the exponent 3). The between team analysis compared the mathematical proper- 
ties of each cost function to the visual differences identified in the KDEs and was used to 
identify the most appropriate cost function for use in rugby league from those considered. 
From this analysis, the Minkowski distance (p = 3) cost function was selected and used 
for all further analyses in the study. 

 
5.2.4.1 Normalised Axis Wasserstein Distance 

To understand axis level differences in the spatial trends of team attacking performances, 
the cost function was manipulated and compared to the results of the Wasserstein distance 
calculated using the unweighted p = 3 cost function (W3, described above). Equal and 
unequal weightings of the W3 cost function were considered (Table5.5). Equal weight- 
ings multiplied the x and y components by an equivalent factor (2 and 3 in this study) 
to identify whether further insights could be gleaned by increasing the cost of movement 
along both axes. Unequal weightings were considered due to the non-square 70m x 120m 
dimensions of a rugby league pitch. With an equally weighted cost function, it was hy- 
pothesized that movements along the y-axis could have an unfairly large influence on the 
Wasserstein distance as the cost of moving the full distance of the y-axis (120) was greater 
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than the cost of moving the full distance of the x-axis (70). Using unequal weightings, 
the cost of moving a single unit along the x axis was manipulated to be greater than the 
y axis by a factor of 12/7. This normalised the cost of moving the complete length of the 
x and y axes. Four variations of the unequal weighting were used: 2.4x, 1.4y; 3.6x, 2.1y; 
4.8x, 2.8y; and 6.0x, 3.5y. It was hypothesized that levelling the cost of movement in this 
manner would enhance the insights provided at an axis level. 

For all weighted cost functions, the Wasserstein distance was calculated for the x and 
y axes independently. To achieve this, the unit cost of moving along the x or y axis was 
multiplied by the given factor, while the other axis maintained the standardised p = 3 
movement cost of one unit (e.g. for the equally weighted 2x, 2y analysis, one distance 
measure was produced for the 2x, 1y weighted p = 3 cost function and one was produced 
for the 1x, 2y weighted p = 3 cost function). The increased movement cost for the fac- 
tored axis ensured that the optimisation procedure only included the most important mass 
movements along the factored axis when calculating the optimal transport plan and al- 
lowed the influence of the weight on each axis to be considered individually. This process 
ensured that three Wasserstein distance values were obtained for each comparison: one 
using the standardised, unweighted p = 3 cost function; one weighted with an increased 
x-factor; and one weighted with an increased y-factor. The importance of mass movement 
along the factored axis to the Wasserstein distance was evaluated by comparing the nor- 
malised axis Wasserstein distance to the standard Wasserstein distance. The normalised 
axis Wasserstein distance W̄ a  was calculated as 

 

 W a − Wp W  = , (5.5) 
p Wp

 

 

where W a is the Wasserstein distance weighted by a ∈ {x, y} and Wp is the standard 
Wasserstein distance for norm p. 

The comparison of normalised axis Wasserstein distance measures was completed at 
the between team level. W̄ a  distances represent the importance of density movements 
along axis a relative to Wp. A larger value indicates a greater cost of density movement 
along axis a relative to the unit density movement cost. Quadrant plots were used to 
evaluate the ability of W a measures to identify differences between teams. 
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Table 5.5: Weighted Wasserstein distance metrics considered in this study 
 
 

x-factor y-factor 
2.0 2.0 
3.0 3.0 
2.4 1.4 
3.6 2.1 
4.8 2.8 
6.0 3.5 

 
 

5.2.4.2 Directional Wasserstein Distance 

To provide directional insights with respect to the spatial trends of attacking perfor- 
mances between teams (i.e. understanding left/right directional differences compared 
to x or y axis differences), the directional Wasserstein distance was calculated using 
the transport matrix from the optimal transport plan. The transport matrix is computed 
for a fine discretisation (xk, yk)K of the field.  For each pair of points (xk, yk) and 
(xk′ , yk′ ), it specifies how much mass is moved from (xk, yk) to (xk′ , yk′ ), denoted by 
T (xk, yk); (xk′ , yk′ ) . As there is a different solution to the transport matrix for every 
cost function employed, the unweighted Minkowski distance (p = 3) cost function was 
used to calculate the transport matrix. The transport matrix was used to obtain directional 
Wasserstein distances for left (Wleft; Equation5.6), right ( Wright, Equation5.6), up ( Wup, 
Equation5.8) and down ( Wdown, Equation5.9): 

 

K K 

Wleft = 1xk′ <xk T  (xk, yk); (xk′ , yk′ ) |xk − xk′ |, (5.6) 
k=1 k′=1 

 
where 1x ′ <xk equals one if xk′ < xk and zero otherwise. 

 
K K 

Wright = 1xk′ >xk T  (xk, yk); (xk′ , yk′ ) |xk − xk′ |, (5.7) 
k=1 k′=1 
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where 1x ′ >xk equals one if xk′ > xk and zero otherwise. 
 

K K 

Wup = 1yk′ >yk T (xk, yk); (xk′ , yk′ ) |yk − yk′ |, (5.8) 
k=1 k′=1 

 
where 1y ′ >yk equals one if yk′ > yk and zero otherwise. 

 
K K 

Wdown = 1yk′ <yk T (xk, yk); (xk′ , yk′ ) |yk − yk′ |, (5.9) 
k=1 k′=1 

 
where 1y ′ <yk equals one if yk′ < yk and zero otherwise. 

The difference between Wleft and Wright was calculated to provide directional insights 
along the x axis. Positive values were indicative of a greater mass movement towards the 
left side of the pitch or away from the right side of the pitch, negative values indicated 
greater mass movement towards the right side of the pitch or away from the left side of 
the pitch. The difference between Wup and Wdown was calculated to provide directional 
insights along the y axis. Positive values were indicative of a greater mass movement 
towards the opponent’s try area or away from the possession team’s try area, negative val- 
ues indicated greater mass movement towards the possession team’s try area or away from 
the opponent’s try area. Quadrant plots were used to compare the directional Wasserstein 
distances to the W3 distance. 

After comparing the normalised axis Wasserstein distance (Equation5.5) and the di- 
rectional Wasserstein distance (Equations5.6to5.9), with respect to the insights they 
provide regarding differences in the spatial trends of team attacking performances at a 
between team level, a within team analysis was performed for two clubs. This analysis 
used the directional Wasserstein distances described above to show how a performance 
analyst may use quadrant plots to evaluate the spatial trends of attacking performances 
for a given team when facing different opponents. Further, it investigated the relationship 
between these differences and the points scored in matches against different opponents. 

 
5.3 Results 

The aim of this study was to adapt, validate and extend previous work byMallepalle et al. 
(2020) by evaluating the spatial trends of team attacking performances in rugby league, 
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both between and within teams. To achieve this aim, 138 xml files provided by Opta 
were preprocessed into a single file of 99,966 rows and 4 columns (Table5.3). From this 
data, 145 KDEs were produced using the whole league data (1), a subset of each team’s 
overall data (12) and a subset of each team-opponent’s data (132), using the same 4.10 
empirically calculated bandwidth. Next, the differences in these KDE distributions were 
evaluated between and within teams using two novel Wasserstein distance metrics. At a 
between team level, the ability to generate insights regarding the axis (via the normalised 
axis Wasserstein distance) and directional (via the directional Wasserstein distance) dif- 
ferences in spatial trends of team attacking performances was discussed. At the within 
team level, quadrant plots were used to show how a performance analyst could use the 
directional Wasserstein distance to gain insights into the directional differences of spatial 
trends of attacking performances for a single team against different opponents. 

 
5.3.1 Quantification of the Spatial Trends of Team Attacking Perfor- 

mances 

To quantify the spatial trends of team attacking performances in this study KDEs were 
used, adapting previous work in American football (Mallepalle et al.,2020). KDEs were 
produced at the whole league, team overall and team-opponent levels. All KDEs were 
produced using the empirically calculated bandwidth 4.10 in the x and y dimensions 
as outlined in Section5.2.3. Figure5.5depicts the KDE for the whole league dataset, 
which was the reference distribution for the between team analysis. Figure5.6shows 
the differences between each team’s overall KDE and the whole league KDE. Visual 
inspection of Figure5.6shows some teams have clear areas of greater (shown in green) or 
lower (shown in red) densities relative to the whole league KDE. For example, Castleford 
(left side) and Huddersfield (central) have strong biases in the x or horizontal direction, 
whereas weaker horizontal biases are present for Hull Kingston Rovers (left side of pitch) 
and Wakefield (not left side of pitch). Leeds (opposition half), Salford (anywhere but 
opposition 20m) and St Helens (anywhere but either 20m) have strong biases in the y or 
vertical direction. Visualising these trends allows coaches and performance analysts to 
see clearly the locations where teams are more or less likely to perform actions across the 
whole season. 
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Figure 5.5: Kernel Density Estimation plot for whole league data at bandwidth 4.10 
 

5.3.2 Evaluation of Between and Within Team Differences 

To evaluate the between and within team differences in the spatial trends of attacking 
performances quantitatively, two novel Wasserstein distance metrics were produced. The 
analyses using the Wasserstein distance measures were conducted in two phases. First, 
the between team analysis was used to identify the most appropriate p-norm for use within 
rugby league and compare the insights gained using the two novel Wasserstein distance 
metrics (normalised axis Wasserstein distance and directional Wasserstein distance). Sec- 
ond, the results were considered at a within team level to understand how coaches and 
performance analysts may use them in practice. 
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Figure 5.6: Comparison between whole league attacking KDE and each team’s overall 
KDE. Green areas are areas represent areas where the team has a higher density than the 
whole league, red areas have lower densities. 

 
5.3.2.1 Identification of Suitable p-norm 

The first element of the between team analysis was to identify the most appropriate p- 
norm for use within rugby league (Equation5.4). Table5.6shows the W1, W2 and W3 
Wasserstein distances at the between team level. These represent p-norms of 1, 2 and 3 
respectively. There was a general trend for the Wasserstein distance to decrease as the 
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Table 5.6: Wasserstein distances for W1, W2 and W3 at the between team level. Distances 
represent differences between the team’s overall KDE and the whole league KDE. Final 
column (W1 − W3) is the difference between the W1 and W3 distances 

 
 

Team W1 W2 W3 W1 − W3 
Castleford 3.07 2.23 2.03 1.04 
Catalans 1.08 0.96 0.94 0.14 

Huddersfield 3.38 2.57 2.38 1.00 
Hull 1.38 1.18 1.13 0.25 

Hull KR 2.12 1.64 1.55 0.57 
Leeds 2.27 1.99 1.96 0.31 
Leigh 2.61 2.13 2.02 0.59 

Salford 2.36 2.23 2.22 0.14 
St Helens 1.60 1.32 1.28 0.32 
Wakefield 1.85 1.48 1.41 0.44 
Warrington 1.72 1.41 1.36 0.36 

Wigan 1.34 1.17 1.14 0.20 
 
 

p-norm increased. However, this difference did not appear to be proportionate between 
teams as Castleford (absolute difference between W1 and W3 = 1.04), Huddersfield (1.00), 
Leigh (0.59), Hull KR (0.57) and Wakefield (0.44) were affected to a much greater extent 
than Salford (0.14) and Leeds (0.31). Given Salford and Leeds both had higher W1 dis- 
tances but lower W1-W3 differences than Hull KR and Wakefield, the variation in W1-W3 
differences is unlikely to be related to the initial W1 distance. 

Visual inspection of Figure5.6suggests that the difference in Wasserstein distances 
could be related to the location of the spatial trends of attacking performances for each 
team. Castleford (left), Huddersfield (central), Hull KR (left) and Wakefield (not left) 
showed some form of bias along the x axis, whereas Leeds (opposition half) and Salford 
(anywhere but opposition 20m) showed biases along the y axis. Given the equal horizontal 
and vertical costs of mass movement between locations for W1, W2 and W3, the difference 
in Wasserstein distances must be related to the diagonal cost of mass movement defined 
by the cost function. The diagonal cost of mass movement was greater in W1 than W2 (by 
the exponent 2) and W3 (by the exponent 3). These differences are shown by the lighter 
(greater cost) and darker (reduced cost) areas in Figure5.4. In order to generate larger 
areas of increased and decreased densities (i.e. those areas spanning the length or width of 
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the pitch), diagonal mass movements would almost certainly have taken place. However, 
the extent to which these diagonal movements could influence the final Wasserstein dis- 
tance along the x and y axes is partly related to the non-square 70m x 120m dimensions 
of the rugby league pitch. Figure5.7shows the difference in the size of movements in the 
x, y and diagonal directions when attempting to move mass from the centre of the pitch 
in the opposition 20m to the left side of the pitch on the team’s own try line. It is clear 
when comparing the left plot to the right plot that the diagonal line is significantly longer 
relative to the horizontal line, denoting movement along the x axis, than it is to the ver- 
tical line, denoting movement along the y axis. Consequently, the diagonal cost of mass 
movement would have a much greater impact on differences along the horizontal x axis. 
Although it is extremely unlikely that the movement all occurred from a singular point 
of density as depicted in Figure5.7, the difference in this diagonal to horizontal/vertical 
movement ratio helps to explain why Castleford, with their horizontal, left side of pitch 
bias (Figure5.6) had a much greater W1-W3 difference than Salford, who had a vertical, 
anywhere but the opposition 20m pitch bias (Figure5.6). The overpowering influence 
of diagonal mass movements on the W1 measure ensures that it is less appropriate for 
the analysis of differences in the spatial trends of attacking performances in rugby league 
than the W2 or W3 distances. Given the similarities between W3 and W2 in Table5.6, the 
W3 distance was used for later analyses as the rectangular shape it produces when x and y 
factors are considered is much more appropriate for this rugby league approach than the 
ellipsoid produced by W2 (Figure5.8). 

 
5.3.2.2 Normalised Axis Wasserstein Distance Differences at the Between Team 

Level 

To gain an understanding of x and y axis differences in the spatial trends of team attacking 
performances, the Wasserstein distance cost function was weighted and compared to the 
standard, unweighted Minkowski distance (p = 3) cost function. Six weighting factors 
were applied to the x and y dimensions of the cost functions, enabling the calculation 
of different Wasserstein distances. Two equal weightings were used: 2x, 2y and 3x, 3y; 
four unequal weightings were used: 2.4x, 1.4y; 3.6x, 2.1y; 4.8x, 2.8y; and 6.0x, 3.5y. The 
weightings increased the cost of moving along the stated axis by the given factor, while the 
cost of moving along the other axis remained unaltered. Quadrant plots of the normalised 
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Figure 5.7: Visualisation of the diagonal distance when moving mass from the centre 
of the pitch relative to the horizontal/vertical components of the movement. Left figure 
shows that the diagonal distance covered to move mass from the opposition 20m to the 
team’s own try line is significantly greater than the horizontal distance. Right figure shows 
that the distance covered is much more even between diagonal and vertical movements, 
reducing the influence of diagonal movements on the overall Wasserstein distance when 
mass is moved vertically relative to horizontally. 

 
axis Wasserstein distance (Equation5.5) were used to evaluate the influence of differences 
in these factors on the results obtained. Figures5.9and5.10show the equally weighted 
Wasserstein distance quadrant plots using factors of 2 and 3 respectively. Figures5.11 
and5.12show the unequally weighted Wasserstein distance quadrant plots with factors 
of 4.8x, 2.8y and 6.0x and 3.5y respectively. In all four plots it is evident that increasing 
the factor increases the normalised axis Wasserstein distance. This pattern is also evident 
for the two weighting factors that are not plotted (2.4x, 1.4y and 3.6x, 2.1y). 

Given the rectangular dimensions of a rugby league pitch (70m in x-direction and 
120m in y-direction), unequally weighted factors (e.g. 6.0x, 3.5y) were calculated in 
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Figure 5.8: Advanced Wasserstein metrics for p = 1 (left), p = 2 (centre) and p = 3 
(right). Plots are shown for x-factor = 6, y-factor = 1 and highlight the rectangular shape 
of p = 3 compared to the diamond for p = 1 and oval for p = 2. Distances are calculated 
from central point. 

 

Figure 5.9: Quadrant plot for Wasserstein distance using factor 2 for x and y directions. 
y-axis represents the normalised increase in Wasserstein distance in x (left) or y (right) 
dimensions. x-axis represents standard Wasserstein distance for p=3. All distances rep- 
resent differences between the team overall KDE and the whole league KDE. Blue lines 
represent median values. 

 
order to assess any differences in the median normalised increase along the x and y axes. 
Using an x-factor of 12/7 times greater than the y-factor equalised the cost of moving the 
full length of the pitch in both directions, so it was possible to assess these differences 
in an equal manner. Interestingly, the influence of changes along the y-axis was typically 
still greater than those in the x-axis when the weightings were unequal. It is possible that 
this is because changes across the width of the pitch (i.e. those shown by St Helens and 
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Figure 5.10: Quadrant plot for Wasserstein distance using factor 2 for x and y directions. 
y-axis represents the normalised increase in Wasserstein distance in x (left) or y (right) 
dimensions. x-axis represents standard Wasserstein distance for p=3. All distances rep- 
resent differences between the team overall KDE and the whole league KDE. Blue lines 
represent median values. 

 

Figure 5.11: Quadrant plot for Wasserstein distance using 4.8x, 2.8y factors. y-axis rep- 
resents the normalised increase in Wasserstein distance in x (left) or y (right) dimensions. 
x-axis represents standard Wasserstein distance for p=3. All distances represent differ- 
ences between the team overall KDE and the whole league KDE. Blue lines represent 
median values. 

 
Leeds) encompassed a greater proportion of the pitch than those along the length of the 
pitch. To this end, only Castleford’s differences on the left side of the pitch spanned its 
complete length. Other teams, including Huddersfield who had the most intense area of 



5.3 Results 

134 

 

 

 
 

 
 

Figure 5.12: Quadrant plot for Wasserstein distance using 6.0x, 3.5y factors. y-axis rep- 
resents the normalised increase in Wasserstein distance in x (left) or y (right) dimensions. 
x-axis represents standard Wasserstein distance for p=3. All distances represent differ- 
ences between the team overall KDE and the whole league KDE. Blue lines represent 
median values. 

 
density greater than the whole league KDE for 60m in the centre of the pitch, still had an 
area of lower density in the centre of the pitch in the opposition 20m (Figure5.6). This 
area of lower density in the opposition 20m reduced the proportion of the pitch covered by 
Huddersfield’s central bias, thus limiting the normalised axis Wasserstein distance along 
the x-axis. Indeed, because Huddersfield’s area of lower density in the opposition 20m 
encompasses the whole width of the pitch, the normalised axis Wasserstein distance along 
the y-axis was actually greater than that along the x-axis. 

By comparing the normalised axis Wasserstein distances to the standardised p = 3 
Wasserstein distance, it is possible to gain clear axis-level insights at the between team 
level. These insights provide a high level understanding of the differences between a 
team’s overall KDE and the whole league KDE. For example, the x plot of Figure5.12 
is able to highlight the importance of x axis differences to Castleford and Huddersfield 
(which are clearly visible in Figure5.6), as well as those of Wakefield, which are less 
visible on the plot but are important relative to the size of the overall difference between 
Wakefield and the whole league KDE. Similarly, along the y axis, it is possible to see 
that Catalans and St Helens have large vertical differences relative to the size of their 
difference with the whole league KDE, whereas Leeds and Salford have large differences 
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along the y axis, as well as large differences overall. The low value of Castleford in the y 
axis plot isn’t mirrored by Huddersfield, which highlights the discussion in the previous 
paragraph surrounding the greater influence of differences covering the whole length or 
width of the pitch on the Wasserstein distance. Coaches and performance analysts can 
use these quadrant plots as an easy method of understanding how they compare to other 
teams in the league. For example, if Castleford were winning the league, coaches could 
look at the plots and see clearly that they have a greater difference along the x-axis than 
any other team. Strategies could then be developed to try and imitate this. 

 
5.3.2.3 Directional Wasserstein Distance Differences at the Between Team Level 

Although manipulating the cost function as described in Section5.3.2.2can provide use- 
ful high level insights, it is limited by its inability to provide an understanding of direc- 
tional differences (i.e. it is unable to show that Castleford have a large bias towards the 
left side of the pitch, only showing that they have a bias along the x-axis). One method 
through which further insight into the direction of the differences between teams could be 
obtained is through the directional Wasserstein distance, which is calculated by extracting 
information from the transport matrix. Equations5.6( Wleft),5.7( Wright),5.8( Wup) and 
5.9( Wdown) show how the directional Wasserstein distance was calculated from the trans- 
port matrix to provide information regarding directional differences in the spatial trends 
of team attacking performances. 

Figure5.13shows how comparing left and right directional Wasserstein distances 
along the x-axis and up and down directional Wasserstein distances along the y-axis can 
provide insight into the directional differences present between teams. The left plot shows 
the left-right Wasserstein distance differences. As with the 6.0x, 3.5y weighted distances 
(Figure5.12), Castleford and Huddersfield have the two greatest distances but now they 
are differentiable in terms of their direction, as Castleford shift predominantly to the left 
whereas Huddersfield shift predominantly to the right. Similarly, Hull Kingston Rovers 
and Warrington are noted as teams who shift left and Wakefield, Leigh and Hull are noted 
as teams who shift right relative to the whole league. It should be noted that the mani- 
festation of these differences in Figure5.6is not uniform. For example, Castleford and 
Hull Kingston Rovers have higher densities on the left side of the pitch, which cause their 
left shift, but Warrington’s left side bias is caused by lower densities on the right side of 
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Figure 5.13: Quadrant plot showing directional Wasserstein distance at the between team 
levels. Positive numbers in the left plot represent an overall shift to the left, positive 
numbers in the right plot represent an overall shift upwards. Blue lines represent median 
values. 

 
the pitch with areas of higher density spread more evenly between central and left areas. 
Similarly, Huddersfield’s right side bias is caused by lower densities on the left side of 
the pitch rather than a specific right side preference. However, the general direction of 
movement for all teams aligns well with the KDE plots. 

The right plot in Figure5.13shows the up-down Wasserstein distance differences. 
Once again, the two teams with the largest values in the 6.0x, 3.5y weighted distance 
plots have the greatest differences and are plotted on different ends of the graph: Leeds 
have a predominantly upward shift towards the opposition 20m; and Salford have a pre- 
dominantly downward shift of density towards their own try line. Hull Kingston Rovers, 
Wakefield, Huddersfield and Warrington who all have large positive or negative densities 
in the opposition 20m are also detected as teams with larger upward/downward density 
movement using this method. Catalans, who were shown as having one of the larger 
Wasserstein distances using the weighted method have a much smaller Wasserstein dis- 
tance difference, which shows a small upward shift. This provides a better representation 
of the paler colours present within their KDE (Figure5.6). 

On the whole the differences shown by the directional Wasserstein distance plots 
provide significant information in a simple format which coaches can use to identify in 
greater detail how they compare to other teams within the league. The incorporation of 
the directional element (as opposed to the axis element described in Section5.3.2.2) is an 
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extremely valuable tool to enable these comparisons. 

 
5.3.2.4 Evaluation of Within Team Differences 

Conducting analyses at the between team level as described in the sections above al- 
lows practitioners to understand the spatial trends of attacking performances for a given 
team relative to other teams in the league. In this section, the results of the analysis are 
discussed at a within team level. At a within team level, the results of the directional 
Wasserstein distance comparisons provide useful insights into the spatial trends of attack- 
ing performances for a selected team against different opponents. For some teams (e.g. 
Castleford; Figure5.15), these differences are easily noticeable when all the team’s data is 
present; for others (e.g. Catalans; Figure5.17), it is important to zoom in on the majority 
of the data as a single extreme value can skew the graph’s axes. This section provides an 
example of how these plots can be used to understand teams’ spatial trends of attacking 
performances and how they relate to match performances against different opponents for 
two clubs: Castleford and Catalans. 

Figure5.14visualises the within team attacking differences for Castleford’s KDEs 
against different oppositions; Figure5.15shows their within team quadrant plot. The left 
plot of Figure5.15shows left sided biases for matches against Hull Kingston Rovers, 
Catalans and St Helens, which are congruent with the respective plots in Figure5.14. 
These biases are in addition to the left side bias that Castleford already shows at a team 
level ensuring that practitioners can be sure that Castleford attacked on the left side of 
the pitch against these opponents. The right side bias for Salford and Huddersfield is 
reciprocated by areas of higher density on that side of the pitch in Figure5.14for both 
teams. However, the specific locations of these biases differ, with Huddersfield having an 
area of green density centrally in the opposition 20m, but down the right side of the pitch 
in between the opposition 20m and own 20m and Salford following the reverse pattern 
(right side in the opposition 20m, central between own and opposition 20m). The right 
side of Figure5.15shows an upward shift against Hull and Huddersfield, likely due to the 
increased densities in the opposition 20m. 

The within team plots provide a method through which coaches can consider the spa- 
tial trends of attacking performances for a team against a given opponent. This can pro- 
vide valuable information when preparing for matches against upcoming matches, partic- 
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Figure 5.14: Comparison between team-opponent KDE and team’s overall KDE for 
Castleford. Top left plot shows overall KDE for Castleford. For all other plots, green 
areas are areas represent areas where the team has a higher density against a specific op- 
ponent than the overall KDE, red areas have lower densities. 

 
ularly if the result of the matches are known. For example, if Huddersfield beat Castleford, 
a coach could infer that part of the result may have been due to Huddersfield successfully 
reducing Castleford’s ability to attack down their favoured left side. However, it should 
be noted that it is currently unclear how much information the plots provide with regards 
to the scoring performance of teams. For example, Castleford showed a left-sided shift 
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Figure 5.15: Quadrant plot showing directional Wasserstein distance for Castleford 
against different opponents. Positive numbers in the left plot represent an overall shift 
to the left, positive numbers in the right plot represent an overall shift upwards. Blue lines 
represent median values. 

 
against Hull Kingston Rovers, Catalans and St Helens. Across the season, they played 5 
matches against these teams, scoring 26 and 19 points against Hull Kingston Rovers, 6 
against Catalans and 0 and 20 against St Helens. Taken in isolation, these results have a 
limited relationship with scoring performance but when it is considered that Catalans and 
St Helens were the two best teams in the league in 2021, whereas Hull Kingston Rovers 
finished close to the bottom of the league, the ability to score 20 points against St Helens 
could actually be considered a positive outcome. 

Figure5.17shows the quadrant plot for Catalans skewed by the outlying opponent 
Leeds. It is skewed by Leeds as Catalans had a much higher density in the opposition 
20m than their season average (Figure5.16). When removing Leeds as in Figure5.18, it is 
easier to visualise the differences between opponents. The left plot shows that as the size 
of difference between the team-opponent KDE and the team overall KDE increases, so 
does the tendency to shift the density of actions rightwards. This is true for all opponents 
except St Helens, who are also one of only two teams to result in a shift downwards 
as the Wasserstein distance between the team opponent KDE and the team overall KDE 
increased. 

As with Castleford, it is possible for coaches to gain insights into the performances 
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Figure 5.16: Comparison between team-opponent KDE and team’s overall KDE for Cata- 
lans. Top left plot shows overall KDE for Catalans. For all other plots, green areas are 
areas represent areas where the team has a higher density against a specific opponent than 
the overall KDE, red areas have lower densities. 

 
of Catalans on an opponent by opponent basis using the quadrant plots, which can pro- 
vide important knowledge with respect to developing tactical strategies for future matches 
against them. Once again though, further context is required to establish the likely pat- 
tern of the matches the team played in. From Catalans perspective, the three key teams 
who were separate from all others within their directional plot (Figure5.16) were Leeds 
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Figure 5.17: Quadrant plot showing directional Wasserstein distance for Catalans against 
different opponents. Positive numbers in the left plot represent an overall shift to the left, 
positive numbers in the right plot represent an overall shift upwards. Blue lines represent 
median values. 

 
(27 and 26 points scored, very large upwards shift), Salford (42 and 42 points scored, 
large right shift and moderate downward shift) and St Helens (20, 12, 31 and 10 points 
scored, large downward shift). These teams are interesting when contextual knowledge is 
applied because it is possible to identify three different types of matches which Catalans 
may have experienced based on the abilities of the opposition. St Helens won the Super 
League Grand Final in 2021, so it is plausible that the majority of matches against them 
would have been really hard fought matches in the centre of the pitch, potentially describ- 
ing the large downward shift in actions relative to Catalans team overall KDE. Salford 
finished 11th in the league, conceding 584 points across the league suggesting their de- 
fence was weak. As such, the moderate downward shift in density may have been because 
Catalans been able to score points against them in fewer actions than against Leeds who 
finished 5th in the league and may have been much better at defending, causing Cata- 
lans to perform more actions in the opposition 20m before they were able to score points. 
The ability to gain these insights from a single plot of analysis (alongside widely known 
information for coaches) ensures KDE and directional Wasserstein distance plots are a 
particularly valuable tool for use within rugby league. 

The work from this study was presented to coaches at Leeds Rhinos rugby league 



5.3 Results 

142 

 

 

 
 

 
 

Figure 5.18: Zoomed in quadrant plot showing directional Wasserstein distance for 
Castleford against different opponents. Positive numbers in the left plot represent an over- 
all shift to the left, positive numbers in the right plot represent an overall shift upwards. 
The opponent Leeds is removed. The co-ordinates for Leeds would be (9.41, -0.58) and 
(9.41, 7.14) for the left and right plot respectively. Blue lines represent median values, 
including Leeds. 

 
club, who were widely impressed. They validated the reliability of the findings regarding 
Huddersfield’s central densities and also explained that Leeds Rhinos’ increased density 
within the opposition half was probably due to the team’s ability to progress into the 
opposition half particularly quickly in the 2021 season. They had not noticed the left sided 
bias shown by Castleford and indicated had they known this it may have influenced their 
tactical preparation for matches against them providing strong validation of the usability 
of the models. They strongly believe the plots have use from a bench marking perspective 
- that is, understanding how the team is performing compared to others and whether there 
are areas that they can improve or investigate further as a result. 

The analyses for this study were conducted in Python using the scikit-learn (Pedregosa 
et al.,2011) and Pythonot (Flamary et al.,2021) packages. 
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5.4 Summary 

In this study, the work ofMallepalle et al.(2020) was adapted, validated and extended 
in rugby league to provide a method through which KDEs could be used to visualise 
the spatial trends of attacking performances at the whole league, team overall and team- 
opponent levels. Two novel metrics were derived from the Wasserstein distance to evalu- 
ate between and within team differences in the spatial trends of attacking performances: 
the normalised axis Wasserstein distance provided insights at the axis level (e.g. x, y 
differences); and the directional Wasserstein distance provided directional insights (e.g. 
left, right, up, down differences). The insights provided by the directional Wasserstein 
distance were shown to be particularly valuable to coaches from a bench marking and 
tactical strategy development perspective. 

The work was presented at the UKCI conference and will subsequently be published 
in Advances in Computational Intelligence Systems. It was also presented to coaches at 
Leeds Rhinos, who were impressed with its ability to provide high level spatial informa- 
tion in such a simple way, providing support for its usability (”I believe [the] work has 
the capacity to have a tangible impact on the day to day operation of an elite rugby league 
team”) and reliability (”it passes the ’eye test’ in terms of validity to expected outcomes”). 
AppendixDprovides the full impact statement from this meeting. The coaches suggested 
that one method of tailoring the analysis to their needs in the future would be to perform 
a KDE/Wasserstein distance analysis based on actions performed against a specific team 
(rather than the current approach of considering all actions performed by a specific team) 
so that all teams’ performances against an opponent could be considered more easily. 
They also suggested performing the analysis at a match by match level would be interest- 
ing, however this idea could run into sample size related random variation issues which 
may limit the usefulness of the plots. 

Future work should now consider applying the KDE and Wasserstein distance meth- 
ods employed in this study to other sports. There is a direct link between its usability 
in rugby league and other invasion sports as by understanding the areas through which a 
team is likely to control the ball, it can be possible to understand where they are likely 
to attack even if the methods here don’t allow for the value of these areas to be consid- 
ered. An alternative application however may be in tennis or golf. Although in these 
sports there is no concept of ”possession”, players are still likely to have tendencies in the 
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direction in which their shots move. Consequently, the methods proposed in this study 
could provide important tactical insights into shifts in serve direction in pressure points in 
tennis (e.g. when serving at break point or serving for the set/match). Similarly, in golf, 
the directional Wasserstein distance could provide an understanding of those players who 
are more likely to drive to the left or right, shorter or longer. Knowledge of these ele- 
ments could provide training and/or scheduling insights with respect to different players’ 
shot making tendencies as they could help to understand which type of player is more 
successful at different courses. 

The results of this chapter provide a valuable method through which the spatial trends 
of attacking performances can be evaluated between and within teams in rugby league. 
However, they are subject to some limitations. The first of these is the difficulty the 
Wasserstein distance metric has with quantifying differences in the centre of the pitch due 
to the smaller distance required to move to any other location on the pitch. The second is 
the limited relationship present with the points scored by teams without additional con- 
textual information being provided. Such a limitation is understandable as all locations 
on the pitch were treated equally within the KDE analyses, which is not the case within 
the sport where controlling the ball closer to the opposition try line is significantly more 
valuable. As such, combining the results of the analyses here with a model which is able 
to value locations on the pitch like Chapter3, but in a smooth manner could prove to be 
an extremely powerful performance measurement tool. 

Building on the work of this study, which deliberately simplified the research ques- 
tion to only consider the probability of controlling the ball in a given location, the next 
study will produce a model which provides a smooth surface estimating the value of an 
action conditional on its location. This will allow context to be added to the team KDEs 
produced in this chapter in a systematic and quantitative manner. The model will also 
provide a method of rating player performances, building on the expert feedback received 
in Chapter4. 
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Chapter 6  
A Bayesian Approach to the Evaluation of 
Team and Player Performances 

 
6.1 Introduction 

In Chapter5, the spatial trends of team attacking performances were evaluated in a smooth 
manner using KDEs. The work was well received by coaches at Leeds Rhinos but required 
further information regarding performances (e.g. the number of points a team scored 
against the opposition, or the league position of a team) to be used most effectively in 
practice. Furthermore, it was unsuitable for the analysis of player performances. 

This study provides a framework through which team and player performances can be 
evaluated in a data driven manner (i.e. without needing additional contextual information) 
in rugby league. A novel EPV model, which uses a Bayesian Mixture Model approach 
to provide a smooth pitch surface is proposed, improving upon previous zonal aggrega- 
tion methods (Chapters3and4;Cervone et al.(2016);Kempton et al.(2016);Singh 
(n.d.)). The model derives the EPV from estimates of the probability of each point scor- 
ing outcome occurring at the end of the possession. By estimating individual possession 
outcome probabilities in a single model, this study improves all previous work, which 
has either aggregated the calculation of all possession outcome probabilities (Chapters 
3and4;Cervone et al.(2016);Chan et al.(2021);Kempton et al.(2016)) or produced 
separate models for different possession outcomes (Decroos et al.,2019). It provides 
significantly greater flexibility to the model as possession outcome probabilities have the 
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potential to provide extensive tactical insight into player and team performances (e.g. are 
there areas on the pitch where a team is more likely to score a converted try or a penalty 
goal?). Novel performance metrics are proposed, combining the results of this study with 
the KDE model from Chapter5, allowing team and player performances to be evaluated 
in an objective, data driven manner. The results have been presented to coaches at Leeds 
Rhinos (AppendixDprovides an impact statement), who provided support for its validity. 

 
6.2 Methodology 

In this section, the methodology for the study is described. It describes the data and data 
preprocessing steps used in this study. The novel EPV model, which estimates the prob- 
ability of individual possession outcomes using a Bayesian Mixture Model approach, is 
outlined. Novel expected points scored and actual vs expected ratings metrics are pro- 
posed to evaluate team and player performances. 

 
6.2.1 Data 

In this study, event level match-play data were obtained from Opta (Stats Perform, Lon- 
don, UK) for the 2021 Super League season. The data was produced via human anno- 
tation of the actions taking place and was downloaded from www.optaprorugby.com. In 
the 2021 Super League season, 138 matches were contested by 12 teams and 373 players. 
A total of 557,050 match events were completed (median 4003 events per match, in- 
terquartile range 3857-4200). Across the season, 1001 tries were scored (768 successful 
conversion kicks, 233 unsuccessful conversion kicks), 175 penalty goals were attempted 
(158 successful, 17 unsuccessful) and 83 drop goals were attempted (37 successful, 46 
unsuccessful). 

Chapter3introduces the data provided by Opta. Like all previous chapters, 13 vari- 
ables were considered for this analysis. These were: ID, FXID, PLID, team id, MatchTime, 
x coord, y coord, action, ActionType, Actionresult, Metres, PlayNum and SetNum. Ta- 
ble3.2defines these variables. The dataset is identical to that used in Chapter5, so action 
by action location data were available. Section5.2.1provides an overview of the actions 
in the data and its presentation in individual xml files. 

http://www.optaprorugby.com/
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6.2.2 Data Preprocessing 

This study used the same dataset and initial preprocessing steps as Chapter5. Section 
5.2.2describes the steps taken to convert the 138 raw xml files described above to a 
single file of 99,966 rows and 4 columns. In this study, these steps are followed until the 
file contained 99,966 rows and 18 columns (i.e. until the penultimate step, as the last step 
filtered the data to the four columns used in Chapter5). 

The dataset for this study was devised using different inclusion and exclusion criteria 
for actions compared to Chapter4, due to the two studies having subtly different aims. 
Chapter4attempted to estimate the expected value of a possession conditional on its 
location, action tuple. This resulted in the study’s possessions being defined to clearly 
replicate sequences of actions within match play. However, in this chapter, the aim was to 
estimate the probability of scoring points conditional on the location on the pitch. It was 
therefore necessary to reduce the number actions included in any given location so that 
only sequences of location changes are provided to the model. For example, after a tackle 
has been completed, a play-the-ball occurs, which is received by a player, who chooses 
to pass or run with the ball. All of these actions typically occur in the same location. In 
Chapter4, all three actions were included as they allowed for the value of each action 
to be estimated. However, in this chapter only one of the actions (the pass or run) was 
included as including all three actions would ensure the sequence of location changes 
was coded incorrectly. As a result of the different inclusion and exclusion criteria, the 
key actions removed from this study’s dataset compared to Chapter4were play-the-balls 
(39,752) and pass catches (100,952). Kick catches remained in the dataset as these would 
typically begin (when receiving a kick from the opposition team) or end (when catching 
a kick from the same team and trying to score a try) a possession. 

Possessions followed the same definition as episodes in Chapters3and4. A posses- 
sion was defined to begin when a team successfully gained possession of the ball and 
ended due to a handover, loss of possession due to an error/foul play, points being scored 
or a goal kick attempt. As with previous chapters, it was possible for an attacking posses- 
sion to encompass more plays than the typical attacking set of 6 tackles if an error/foul 
was made by the opposition team. 

Possession outcomes were treated as discrete categories in this study to enable the 
estimation of individual probabilities. Unlike Chapters3and4, where every action was 
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coded based on its unique possession outcome, in this study, every action in a possession 
was marked with the possession outcome category from the end of the possession. Five 
possession outcome categories were used: converted try; unconverted try; penalty goal; 
drop goal; and no try. These are the same as the rewards previously described in Chapters 
3and4. However, by considering the outcomes discretely (i.e. as categories), rather than 
providing a numerical value (e.g. 6 points for a converted try), it was possible to estimate 
the probability of all five possession outcomes occurring from a given location in a single 
model. No study has yet attempted this method of analysing possession outcomes, but 
doing so creates an extremely flexible model which can provide detailed insights into 
team performances. For example, understanding where teams are more likely to end 
possessions by scoring drop goals or penalty goals is useful when preparing strategies to 
face opposition teams. Similarly, it allows visualisation of those areas on the pitch that are 
most likely to result in tries being scored by the opposition team. It would not be possible 
to gain these insights if the numerical value of the possession outcome was aggregated 
like in previous Markov models (Chapters3and4;Cervone et al.(2016);Chan et al. 
(2021);Kempton et al.(2016)). 

To enable the estimation of individual possession outcomes at multiple levels of anal- 
ysis, the data for this study were organised into 25 subsets. Similar to Chapter5, 13 of 
these subsets represented the whole league data (1) and team attacking data (12). After 
considering the feedback from Chapter5, this study also utilised 12 subsets representing 
team defending data (i.e. all actions taken against that team). Table6.1provides de- 
scriptive statistics for the subsets of data included within the study. There is remarkable 
similarity in the median number of observations per team attacking and team defending 
subsets, but more variability in the attacking subsets. This variability suggests the number 
of actions a team performs when attacking is more varied than the number of actions they 
face when defending. 

The final dataset contained 99,966 observations and 7 columns. Included within these 
columns were: the attacking and defending team, which acted as identifiers for data sub- 
sets; the player ID, which allowed player performances to be evaluated; the x, y locations 
of every action; the possession number, which identified unique possessions; and the dis- 
crete possession outcome. Table6.2provides a sample of the final dataset. It shows an 
attacking possession for St Helens against Salford, where seven players are involved in 
advancing the ball towards the opposition try line, but no points are scored. 
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Table 6.1: Descriptive data for data subsets. IQR is interquartile range; Min/Max refers 
to minimum and maximum number of observations. 

 
 

Comparison Subsets Median IQR Min/Max 
Whole league 1 99966  

Team attacking 12 8105 7596-8937 7203/10324 
Team defending 12 8077 7878-8700 7579/9620 

 
Table 6.2: Sample possession within the dataset. Data includes the teams involved in 
the possession, the player ID, the x, y coordinates of the action, the possession number 
(PosNum) and the possession outcome (PosCat; in this case no try for all rows). 

 
 

Attacking Team Defending Team Player ID x y PosNum PosCat 
St Helens Salford 3107 9 4 1 0 
St Helens Salford 21716 9 6 1 0 
St Helens Salford 1983 14 11 1 0 
St Helens Salford 2904 22 13 1 0 
St Helens Salford 11439 12 12 1 0 
St Helens Salford 21795 37 16 1 0 
St Helens Salford 20567 36 24 1 0 
St Helens Salford 2904 54 35 1 0 

 
 

6.2.3 Bayesian Mixture Model 

In this study, a Bayesian Mixture Model was used to develop a novel EPV model capable 
of evaluating team and player performances. Bayesian analysis (Definition6.2.1) is ide- 
ally suited to the estimation of this model in rugby league for several reasons. Firstly, it 
adopts an evidence based approach, which allows it to estimate certainty and uncertainty 
within parameter estimates. This ensures that in areas of the pitch where little evidence is 
available, a parameter value can be estimated, but confidence within the estimate can be 
tempered as appropriate. Using the Markovian approaches of Chapters3and4, this was 
not possible. Secondly, the use of prior distributions can assist the model in understand- 
ing likely parameter values, reducing the amount of data required to generate plausible 
parameter estimates. This is in contrast to the machine learning (Decroos et al.,2019) 
and deep learning (Fernández et al.,2021;Liu et al.,2020) approaches previously used 
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in sport, which randomly initialise parameters, and is particularly important in this study 
where only 99,966 observations are available. Finally, the complexity of the output (five 
possession outcome probabilities for 33 centres) is well suited to a custom model formu- 
lation, which is easier to solve using an evidence based Bayesian approach than through 
machine learning methods. 

Definition 6.2.1. Bayesian statistics is an approach to data analysis centred around Bayes 
Theorem (Equation6.1). It consists of three main elementsvan de Schoot et al.(2021): 

• the prior distribution, which outlines current knowledge about the parameter 

• the likelihood function, which is the function through which the data influences the 
posterior distribution 

• the posterior distribution, which balances the prior knowledge (as provided through 
the prior distribution) with the observed data to identify the most plausible param- 
eter values given the evidence available 

For use within Bayesian analysis, Bayes Theorem (Equation6.1) is normally rewritten 
as Equation6.2allowing it to produce parameter estimates ( θ) conditional on the observed 
data (y): 

p(B|A) = p(B ∩ A) 
p(A) 

, (6.1) 

 
p(θ|y) = 

p(y|θ)p(θ) 
p(y) 

 
, (6.2) 

 

where p(θ|y) and p(y|θ) are conditional likelihoods of θ given y and y given θ, respec- 
tively, and p(θ) and p(y) are the likelihoods of θ and y, respectively. 

The novel EPV model produced in this study used a Bayesian Mixture Model ap- 
proach to provide a smooth pitch surface. In this approach, the model estimates the prob- 
ability of each possession outcome (s ∈ S) for a set of centres on the pitch. Each centre 
holds probabilities for the five possession outcomes, represented as a 5-dimensional vec- 
tor. The probabilities for any x, y location on the pitch are calculated by taking a weighted 
average of probabilities at all centres on the pitch using a set of weights Z. Denoting by 
P(s; x, y) the probability of possession outcome s at location (x, y) is calculated as 

 
P(s; x, y) = zk(x, y)Pk(s) (6.3) 

k 
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where zk(x, y) is the weight corresponding to the location (x, y) and k-th centre and Pk(s) 
is the probability of possession outcome s at the centre k. 

The weights for each centre were treated as fixed for every x, y location on the pitch 
(Section6.2.3.1) so Bayesian analysis was used to compute the distribution of possession 
outcome probabilities at all centres Pk. The prior distribution for Pk is Dirichlet with the 
parameter, α: 

Pk ∼ Dirichlet(α). 

The prior distributions are independent between centres (i.e. there are separate prior dis- 
tributions, denoting the prior probabilities of all five possession outcomes occurring, for 
centres 1, 2, 3, 4 etc.). The Dirichlet distribution is a multivariate generalisation of the 
beta distribution, parameterised by a vector of positive reals (α). Its output is a vector 
of non-negative numbers summing up to one, i.e., a vector of probabilities. As it is only 
possible for one possession outcome to occur every possession in rugby league, this dis- 
tribution is ideally suited as the prior for possession outcome probabilities. 

The likelihood function for a set of data, D = (xi, yi, si)n is given by: 
 

P(D|α) = 
IJ L 

zk(xi, yi)Pk(si|αk), 

 

where α = (αk)k is the vector of centre Dirichlet parameters and 

Pk(s|αk) = 
r 

πspDirichlet(p|αk)dπ, 

where pDirichlet(π|αk) is the density of Dirichlet distribution with parameter α at point 
π ∈ {(π1, . . . , π5) ∈ [0, 1]5 : π1 + . . . + π5 = 1}. 

With the above notation, the prior is αk = α for all k; the posterior distribution is 
the distribution of p((α)|D). It is intractable as each observation influences 4 centres (in 
the field of play) or 2 centres (in the try area), and the weights and centres vary between 
observations. Therefore, Markov Chain Monte Carlo (MCMC) sampling was used to es- 
timate the probabilities at each centre. MCMC sampling methods allow for the systematic 
random sampling from high dimensional probability distributions and those samples were 
used to draw conclusions on the posterior distribution of probabilities on the pitch. 
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6.2.3.1 Centre Weights 

Within a Bayesian Mixture Model approach, a set of centres are defined on the pitch, 
through which the data is aggregated using a set of weights. Previous EPV models have 
aggregated x, y locations on the pitch into zones (Chapters3and4;Cervone et al.(2016); 
Kempton et al.(2016);Singh(n.d.)). Using a zonal approach, the data for every location 
within the zone is aggregated equally resulting in dichotomous “boxed” values (Figure 
3.6). This aggregation is necessary to allow EPV estimates to be produced but results 
in situations where moving 1m from the current location could lead to an unreasonably 
large difference in EPV if it results in moving to a different zone. In this study, the 
centres can be considered analogous to the corners of zones. However, by treating the 
centres individually, rather than together as a zone, a custom set of unequal weightings 
can be produced, which better reflect the proximity of the x, y location to the centre. For 
example, suppose a location is 20m away from centre 1 but only 2m away from centre 
2. Using a zonal approach, the two centres would be equally weighted when aggregating 
data. In this study, using linear and bilinear interpolation techniques, centre 2 would have 
a much larger weight than centre 1, reflecting the spatial proximity of the location much 
more accurately and allowing a smooth pitch surface to be formed. 

After consultation with professional experts, 33 centres were placed around the pitch. 
30 centres were located in the field of play, uniformly positioned at x ∈ {0, 20, 35, 50, 
70} and y ∈ {-10, 20, 35, 65, 90, 100}. These locations were chosen to ensure that every 
location within the field of play would fall within a “zone” defined by four centres. Figure 
6.1plots the centre locations for the field of play. 3 centres were located in the opposition 
team try area (x ∈ {0, 35, 70}). No y coordinate was considered for centres in the try 
area as the actions players choose in this area are not influenced by their y coordinate. 
The three try area centre locations were produced to ensure that the x coordinate of every 
location in the try area fell between two centres. The field of play and try area centres 
were evaluated separately. This decision was made due to the different player behaviours 
that are observed in the two areas: in the field of play, players are equally likely to choose 
different actions dependent on the game situation; in the try area, players will attempt to 
ground the ball for a try as soon as possible irrespective of the game situation. 

Every x, y location was assigned 33 weights, which described the aggregation of their 
data to the centres in the model. 30 weights were calculated in the field of play using 
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Figure 6.1: Location of 30 centres used in this study. Three centres (not plotted) were 
included in the try area at x ∈ {0, 35, 70}, equivalent to the left, middle and right centres 
in the field of play. No y coordinate was considered for these centres. 

 
bilinear interpolation, 3 weights were calculated in the try area using linear interpolation. 
In line with the assumption of independence between the two areas of the pitch, any 
location in the field of play was automatically given weights of 0 for the try area centres; 
any location in the try area was automatically given weights of 0 for the field of play 
centres. 

Locations in the field of play had a maximum of four non-zero weights. The value 
of the weights for each x, y location in the field of play was derived from the distance 
between the x, y location and the four centres surrounding it in a quadrilateral shape. 
These centres had coordinates (x1, y1), (x1, y2), (x2, y1) and (x2, y2). The weights (z11, 
z12, z21 and z22) of these centres for location x, y were calculated using Equations6.4, 
6.5,6.6and6.7. The remaining centres were assigned a weight of 0. 

 (x2 − x)(y2 − y)  z = , (6.4) 
11 (x − x1)(y2 − y1) 2 
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 (x2 − x)(y − y1)  z = , (6.5) 
12 (x − x1)(y2 − y1) 

 (x − x1)(y2 − y)  z = , (6.6) 
21 (x − x1)(y2 − y1) 

 (x − x1)(y − y1)  z = . (6.7) 
22 (x − x1)(y2 − y1) 

Locations in the try area had a maximum of two non-zero weights. Here, only the 
x location of the centres (x ∈ {0, 35, 70}) was considered so the weights were derived 
from the distance between the x coordinate of the action location and the x coordinate 
of the centre. For an x, y location in the try area, linear interpolation between the two 
closest centres x1, x2, from the above set of three, with x2 > x1, was used to calculate 
two weights z1, z2; the weight of the remaining centre was set to 0. The non-zero weights 
were given by: 

z  = 
x2 − x 

, (6.8) 
x2 − x1 

z = 
x − x0  . (6.9) 

 
6.2.3.2 EPV Calculation 

x2 − x1 

 

The EPV for a location was derived from the possession outcome probabilities. The 
EPV for a location with coordinates x, y was calculated using the probability of the five 
possession outcomes and their true points scoring values: 

 
EPV(x,y) = P(s; x, y)Points(s) (6.10) 

s∈S 
 

where P(s; x, y) is the probability of possession outcome s in location x, y (Equation6.3) 
and Points(s) is the true point scoring value of possession outcome s (Table2.1). 

The EPV provides a single value which combines all possession outcome information 
like previous studies (Chapters3and4;Cervone et al.(2016);Chan et al.(2021);Kemp- 
ton et al.(2016);Singh(n.d.)). By calculating the EPV in this manner, the approach of 
this study is not dissimilar to the decomposed MDP approach ofFern ández et al.(2021). 
However, rather than decomposing the EPV calculation into different actions, this study 
decomposes it into different possession outcomes. 

2 

2 

2 
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6.2.3.3 Modelling Approach 

The analysis for this study was conducted at two levels. First, the model was run using the 
whole league data, then the 24 team attacking and defending models were run, using the 
data subsets described in Section6.2.2. It has previously been argued that a hierarchical 
approach is the most appropriate method of analysing data at multiple levels (van de 
Schoot et al.,2021), however adopting such a method would have only allowed a single 
averaged shift (either positive or negative) away from the whole league model estimates. 
As such, if a team had a greater probability of scoring a try from the left side of the pitch 
in the opposition try area, but a greater probability of scoring from the right side of the 
pitch in their own half than the whole league model estimates, it would not be possible 
to identify these differences using a hierarchical approach. In this study, completing two 
levels of analyses (i.e. whole league, then team level) allowed the team level models 
to include information already learned about the league within their parameter estimates 
through the use of an α prior distribution estimated from the whole league model posterior 
distribution. 

The whole league data model provided league average possession outcome probabili- 
ties. For this proof of concept model, human-defined priors were used for Pk (Table6.3). 
These priors were selected after discussion with experts and were informed by the results 
of Chapters3and4. They loosely informed the model that there was a greater chance of 
points being scored by the end of the possession the closer the location was to the oppo- 
sition try line. It would have been possible to provide more specific priors suggesting a 
greater probability of scoring more points in central areas as was was shown in the results 
of Chapter3. However, it was decided that providing more generic, loosely informative 
priors allowed the model to learn from the data with greater freedom. 

24 models were produced at the team level, one for each team’s attacking and defend- 
ing data subsets. The team attacking models provided an understanding of the probability 
of a team achieving a given possession outcome at the end of their possession from any 
given location. The team defending model estimated the probability of any opposition 
team achieving a given possession outcome when controlling the ball at any given loca- 
tion against the defending team. Maximum likelihood estimation of the posterior distri- 
bution of the whole league model was used to calculate the α priors for these analyses 
(Table6.4). The same α prior distribution was used for each team model. 
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Table 6.3: Prior α values for whole league Bayesian model. Centre coordinates are 
provided, alongside α values for each possession outcome. C.Try refers to converted try 
(6 points) and U.Try refers to unconverted try (4 points). 

 
 

Centre No Try Drop Goal Penalty U.Try C.Try 
( 0, -10) 90 1 1 4 4 
(20, -10) 90 1 1 4 4 
(35, -10) 90 1 1 4 4 
(50, -10) 90 1 1 4 4 
(70, -10) 90 1 1 4 4 
( 0, 20) 90 1 1 4 4 
(20, 20) 90 1 1 4 4 
(35, 20) 90 1 1 4 4 
(50, 20) 90 1 1 4 4 
(70, 20) 90 1 1 4 4 
( 0, 35) 85 1 3 5 6 
(20, 35) 85 1 3 5 6 
(35, 35) 85 1 3 5 6 
(50, 35) 85 1 3 5 6 
(70, 35) 85 1 3 5 6 
( 0, 65) 80 1 3 7 9 
(20, 65) 80 1 3 7 9 
(35, 65) 80 1 3 7 9 
(50, 65) 80 1 3 7 9 
(70, 65) 80 1 3 7 9 
( 0, 90) 75 1 3 9 12 
(20, 90) 75 1 3 9 12 
(35, 90) 75 1 3 9 12 
(50, 90) 75 1 3 9 12 
(70, 90) 75 1 3 9 12 
( 0, 100) 70 1 3 10 15 
(20, 100) 70 1 3 10 15 
(35, 100) 70 1 3 10 15 
(50, 100) 70 1 3 10 15 
(70, 100) 70 1 3 10 15 
( 0, TRY) 35 1 1 28 35 
(35, TRY) 35 1 1 28 35 
(70, TRY) 35 1 1 28 35 
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Table 6.4: α prior distribution values for team attacking and defending models. α values 
calculated via maximum likelihood estimation from posterior distribution of the whole 
league model. Centre coordinates are provided, alongside α values for each possession 
outcome. C.Try refers to converted try (6 points) and U.Try refers to unconverted try (4 
points). Values rounded to 2 decimal places for brevity. 

 
 

Centre No Try Drop Goal Penalty U.Try C.Try 
( 0, -10) 184.72 0.72 2.01 4.97 6.43 
(20, -10) 345.31 1.07 6.38 7.45 14.88 
(35, -10) 280.81 1.37 4.63 5.08 16.00 
(50, -10) 365.08 0.95 6.30 7.90 15.67 
(70, -10) 230.12 0.77 1.28 5.40 6.11 
( 0, 20) 371.56 2.28 1.87 7.08 27.40 
(20, 20) 1559.21 2.73 14.96 28.85 86.65 
(35, 20) 2815.84 6.64 44.81 67.00 168.66 
(50, 20) 1599.20 1.03 22.07 25.46 94.59 
(70, 20) 393.10 0.73 1.75 6.92 35.35 
( 0, 35) 373.60 2.10 5.30 6.51 33.39 
(20, 35) 1707.17 2.05 18.37 30.07 121.44 
(35, 35) 2636.37 8.50 24.50 59.31 162.86 
(50, 35) 1673.02 3.58 21.79 44.56 116.69 
(70, 35) 310.63 3.68 6.61 10.50 25.85 
( 0, 65) 439.66 2.03 10.38 17.21 63.22 
(20, 65) 2189.67 10.97 65.76 75.37 294.36 
(35, 65) 2546.81 26.14 94.46 84.30 355.25 
(50, 65) 1726.64 6.24 49.69 68.55 197.80 
(70, 65) 360.60 1.82 8.02 18.25 51.31 
( 0, 90) 413.37 2.70 6.90 35.62 83.31 
(20, 90) 1356.56 8.21 32.70 139.25 384.54 
(35, 90) 2150.80 43.80 116.69 241.11 636.41 
(50, 90) 1437.66 12.84 43.18 142.16 463.60 
(70, 90) 365.55 0.91 11.60 34.77 50.19 
( 0, 100) 154.63 1.15 3.38 18.26 50.01 
(20, 100) 370.25 5.46 8.15 42.98 116.60 
(35, 100) 427.75 3.94 7.62 47.37 146.33 
(50, 100) 299.46 4.83 7.87 40.45 99.93 
(70, 100) 121.38 1.30 2.36 24.68 34.07 
( 0, TRY) 36.62 0.98 0.95 33.38 46.66 
(35, TRY) 43.45 0.97 0.99 29.80 68.50 
(70, TRY) 42.17 1.00 1.02 30.12 39.13 
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The mean of the posterior distribution of possession outcome probabilities Pµ for 
each model was substituted into Equations6.3and6.10to provide individual possession 
outcome probabilities and EPV for each x, y location: 

Pµ(s; x, y) = 
L 

zk(x, y)Pµ(s) 
 
 
 

µ 
(x,y) 

k 
 

= Pµ(s; x, y)Points(s) 
s∈S 

The standard deviation of the posterior distribution of possession outcome probabil- 
ities Pσ  for each model was used to provide an understanding of uncertainty within the 
parameter estimates for each x, y location. This required Equations6.3and6.10to be 
modified: 

Pσ(s; x, y) = 
sL 

zk(x, y)Pσ(s)2 
 
 

σ 
(x,y) 

k 
 

= Pσ(s; x, y)2Points(s) 
s∈S 

A smooth pitch surface was produced by calculating these values for every x, y loca- 
tion on the pitch. Smooth pitch surfaces were produced for each of the five possession 
outcomes and EPV for the whole league model and every team attacking and defend- 
ing model. For notation purposes, the complete smooth pitch surface is referred to from 
hereonin as Pϕ (s) and EPVϕ ; where model refers to the model used to evaluate Pk 
(whole league (wl), team attacking (att) or team defending (def)) and ϕ ∈ {µ, σ} denotes 
the posterior distribution mean or standard deviation measure used. Individual x, y loca- 
tion values are only used for the whole league model, and so are referred to as Pϕ(s; x, y) 
and EPVϕ , where ϕ ∈ {µ, σ} denotes the posterior distribution mean or standard devia- 
tion measure used. 

 
6.2.4 Expected Points Scored 

To provide a novel measure of underlying team performances in rugby league, an expected 
points scored metric was produced which combined the results of this study with the 
KDE models produced in Chapter5. The expected points scored for a given team (team) 

EP
 

EP
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versus an opponent team (opp) was calculated via Equation6.11. It provides a quantitative 
measure of the underlying performance of the chosen team, by estimating the number of 
points they were expected to score based on the EPV model used (team attacking or 
opponent defending), the KDE model of their spatial trends of attacking performance and 
the number of scoring opportunities they had (i.e. the number of possessions they were 
involved in). 

 

Expected Points Scoredteam, opp = EPVµ × KDEteam,opp × Possessionsteam,opp (6.11) 
 

where EPVµ refers to the mean attacking or defending team EPV smooth pitch surface 
used, KDEteam,opp refers to the KDE pitch surface for the selected team in possession 
against the opponent (developed in Chapter5) and Possessions team,opp refers to the number 
of possessions completed by the attacking team against the opponent. 

The expected points scored calculation was completed using the team-opponent KDEs 
from Chapter5. Two EPV measures were considered: EPV µ the selected team’s attack- 
ing mean EPV pitch surface; and EPVµ the opposition team’s mean defensive EPV pitch 
surface. Using the team’s attacking EPV pitch surface in the calculation allows practi- 
tioners to understand how well the team was able to utilise their strengths against the 
opposition; using the opposition team’s defensive EPV pitch surface allows practitioners 
to understand how well the attacking team was able to exploit the opposition team’s de- 
fensive weaknesses. The expected points scored values were summed to provide a single 
performance figure for the team across the season. 

 
6.2.5 Actual vs Expected Ratings 

To evaluate player performances, Actual vs Expected (AE) player performance ratings 
were devised using the whole league model. Building upon feedback from Chapter4, 
where actions were valued for being attempted, rather than for the outcome achieved, the 
AE ratings compared the actual return of the possession (i.e. the points value for the 
possession outcome) to its expected return (i.e. the EPV at the location where the player 
performed the action, EPVµ ) for every action a player was involved in (Equation6.12). 
The sum of the differences between actual and expected returns was divided by the me- 
dian number of possessions per player team per fixture. This choice of the denominator 
ensured that players from teams who had more possessions within a match were not un- 
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duly favoured by the results. Only players completing more than 200 actions across the 
season were included in the analysis. Recalling the dataset D = (xi, yi, si)n , Equation 
6.12was defined as: 

Player X’s AE rating = i such that player X in possession(si − EPV(xi,yi)) 
Player X’s team median number of possessions per fixture 

(6.12) 
 

6.3 Results 

The aim of this study was to provide a framework through which player and team per- 
formances could be evaluated in rugby league in a data-driven manner. To achieve this 
aim, 138 xml files provided by Opta were preprocessed into a single file of 99,966 rows 
and 7 columns (Table6.2). Using this data, the study proposed a novel EPV model which 
produced a smooth pitch surface estimating the probability of individual possession out- 
comes. 33 centres (30 in the field of play, 3 in the try area) were used in a Bayesian 
Mixture Model approach, which applied linear and bilinear interpolation techniques to 
produce a smooth pitch surface. The EPV was derived from the individual possession 
outcome probabilities and their true point scoring values. Both the Bayesian Mixture 
Model approach used and the estimation of individual possession outcome probabilities 
are novel additions to the literature. EPV models were produced at the whole league, team 
attacking and team defending levels. Two novel performance metrics were introduced: an 
expected points scored measure which quantifies the underlying performances of teams; 
and an actual versus expected player rating which evaluates player performances. 

A key component of the EPV model is the use of a novel Bayesian Mixture Model 
approach, which allows data to be aggregated in a more flexible manner than the zonal 
approaches previously employed in this thesis and the literature (Chapters3and4;Cer- 
vone et al.(2016);Kempton et al.(2016);Singh(n.d.)). In this study, a maximum of 
four centres received non-zero weights for any x, y location. These centres formed the 
corners of a quadrilateral surrounding the x, y location of an action. They could therefore 
be considered analogous to the corners of a “zone” used in a Markov model. Table6.5 
provides a sample of weights for five actions from this study. In a Markov model, the 
weights for the four non-zero centres would each be equal to 0.250, irrespective of the 
x, y location of the action. In this study, the interpolation techniques used to calculate the 

. 
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Table 6.5: Abbreviated example of weights used in this study. Only first 8 centres are 
shown, column titles represent centre coordinates. All other centres (n = 25) are assigned 
weights of 0 based on the x, y location of these example actions. 

 
 

x y (0,-10) (20,-10) (35,-10) (50,-10) (70,-10) (0,20) (20,20) (35,20) 
9 4 0.293 0.240 0.000 0.000 0.000 0.257 0.210 0.000 
9 6 0.257 0.210 0.000 0.000 0.000 0.293 0.240 0.000 
14 11 0.090 0.210 0.000 0.000 0.000 0.210 0.490 0.000 
22 13 0.000 0.202 0.031 0.000 0.000 0.000 0.664 0.102 
12 12 0.107 0.160 0.000 0.000 0.000 0.293 0.440 0.000 

 
 

weights allowed much more flexible weights to be produced based on the x, y location’s 
proximity to the centre. This is shown by the (20, −10) and (20, 20) centre weights for 
the locations (9, 4) and (9, 6). The y coordinate half way between −10 and 20 is 5. Both 
(9, 4) and (9, 6) are 1m away from this point in opposite directions and therefore have 
opposing weights for the centres (20, −10) and (20, 20). To this end, any probability or 
EPV estimates for location (9, 4) were influenced to a slightly greater extent by the centre 
(20, −10), whereas any probability or EPV estimates for location (9, 6) were influenced 
to a slightly greater extent by the centre (20, 20). It is this weighting system that allowed 
a smooth pitch surface to be produced. 

Within the mixture model approach, the decision was made to treat centres in the field 
of play and try areas independently. Of the 99,966 actions included in this study, only 
91 occurred in the try area. The EPVµ of these actions was much greater than those 
actions outside of the try area. For example, using centre values, the highest EPV in 
the field of play was at centre (50, 100), where EPVµ = 1.73. All three try area 
centres had much greater values (EPVµ ∈ {3.52, 3.72, 3.16}). This difference justifies 
the separation between field of play centres and try area centres. For clarity of figure 
presentation, the try area values are removed from all plots for the rest of this chapter. 

 
6.3.1 Estimation of Individual Possession Outcomes 

Alongside the modelling approach, the estimation of individual possession outcomes 
probabilities in a single model is another novel addition to the literature. Previous ap- 
proaches either aggregated the calculation of all possession outcome probabilities numer- 



6.3 Results 

162 

 

 

w
 

 
 

 
 

Figure 6.2: Whole league model mean pitch surface plot. 4pt Try and 6pt Try refer to 
unconverted and converted tries respectively. With the exception of EPV, probabilities 
are plotted. Smooth pitch surface for possession outcome probabilities is calculated using 
Equation6.3for each x, y location on the pitch. EPV for each location is calculated using 
Equation6.10. Brighter areas represent higher values. 

 
ically (Chapters3and4;Cervone et al.(2016);Chan et al.(2021);Kempton et al.(2016)) 
or produced separate models for different possession outcomes (Decroos et al.,2019). By 
producing smooth pitch surfaces for each possession outcome within a single model, as 
well as deriving the EPV, it is possible to gain greater insights into areas where teams 
generate value. 

Figure6.2depicts the mean pitch surface for the whole league data model ( Pµ (s) for 
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all s ∈ S and EPVµ ). There is a greater probability of points being scored by the end of 
the possession, the closer the location is to the opposition try area. The darker arc on the 
no points probability surface close to the opposition try line indicates that more points are 
likely to be scored from central locations than wider locations unless a player is extremely 
close to the try line. In general, a converted try was more likely to occur at the end of a 
possession than an unconverted try and a penalty goal was more likely to be scored than 
a drop goal. An interesting observation is the increased probability of an unconverted try 
on the very right hand side of the pitch close to the try line. This links with a prevailing 
theory within rugby league that right footed kickers (the majority of kickers in the Super 
League are right footed) find it harder to kick conversions from the right side of the pitch. 
The greater probability of drop goals and penalty goals being scored in the centre of the 
pitch is also notable and suggests that typically teams only attempt either type of kick 
in areas where they feel they are guaranteed to score points. The smooth pitch surface 
for each individual possession outcome produced by the model in this study allows much 
greater information to be extracted than the zonal EPV-19 models produced in Chapters 
3and4and the literature (Cervone et al.,2016;Chan et al.,2021;Kempton et al.,2016). 

An advantage of adopting a Bayesian approach to the model proposed in this study is 
that it allows an understanding of the certainty within parameter estimates to be gleaned. 
Figure6.3provides standard deviation pitch surface plots for all possession outcome prob- 
abilities using the whole league data model (Pσ (s) for all s ∈ S). Also plotted in Figure 
6.3is the whole league KDE produced in Chapter5, which provides an understanding of 
the location densities across the pitch. In all possession outcome plots, there is greater 
variability in the wider areas of the pitch, which is accompanied by a lower density of 
actions in those areas in the KDE plot. This variability is particularly large for the penalty 
goal probabilities in wide areas, which could indicate that the result does not occur that 
often from these areas and that the probabilities estimated for those areas should be treated 
with a degree of caution. A similarly interesting observation is the increased variability in 
try/no try probabilities in both corners of the pitch on the opposition try line. This could 
be due to a number of factors, including fewer actions happening in these areas (suggested 
by the KDE plot) and more conversion kicks being missed from these areas after the try 
has been scored (suggested by the increased probability of unconverted tries on the right 
side of the pitch). 
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Figure 6.3: Whole league model EPV standard deviation plot. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. Whole league KDE is reproduced from 
Chapter5to provide an understanding of location densities. Brighter colours indicate 
higher values. 

 
6.3.2 Evaluation of Team Performances 

To evaluate performances at a team level, individual EPV models were produced for each 
team’s attacking and defensive data subsets. The team attacking models provided an 
understanding of the probabilities of a team achieving a given possession outcome at the 
end of their possession for any given location. The team defending model estimated the 
probabilities of any opposition team achieving a given possession outcome at the end 
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Figure 6.4: Castleford smooth pitch surface plot from team attacking model. Green areas 
represent higher value for more favourable event (i.e. greater probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
of their possession when controlling the ball at any given location against the defending 
team. As with the whole league model, the EPV was derived from these possession 
outcome probabilities (Equation6.10). Each team’s smooth EPV pitch surfaces for the 
attacking EPVµ and defending EPVµ models were used in the calculation of a novel 
expected points scored metric (Equation6.11). 

Similar to the whole league model, visual inspection of the smooth pitch surface plots 
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Figure 6.5: Catalans smooth pitch surface plot from team attacking model. Green areas 
represent higher value for more favourable event (i.e. greater probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
produced for each team could be used to evaluate their strengths and weaknesses across 
the pitch. Figures6.4,6.5,6.6show the smooth pitch surface plots for the team attacking 
models (Pµ (s) for all s ∈ S and EPVµ ) of Castleford, Catalans and Wigan respectively, 

att att 

compared to the whole league model. Castleford (Figure6.4) show a greater probability of 
scoring tries on the left side of the pitch compared to the whole league model. On the right 
side of the pitch, they show a much greater probability of scoring penalties, particularly in 
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Figure 6.6: Wigan smooth pitch surface plot from team attacking model. Green areas 
represent higher value for more favourable event (i.e. greater probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
the opposition 30m, potentially providing insights into their decision making processes in 
different areas of the pitch. Catalans (Figure6.5) were less likely to score an unconverted 
try compared to the whole league model in the opposition 20m but were more likely to 
score a converted try across the majority of the pitch. They were also less likely to score 
no points across the majority of the pitch, which is reflected in their EPV plot being greater 
than the whole league model in most pitch locations. Wigan (Figure6.6) showed a greater 
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Figure 6.7: Castleford smooth pitch surface plot from team defending model. Green 
areas represent higher value for more favourable event (i.e. lower probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
probability of scoring unconverted tries or no points across the pitch in the opposition half 
in their model. This trend is reflected by the red (meaning reduced probability or value) 
areas present across the converted try, penalty and EPV plots. They were also more likely 
to score unconverted tries in the opposition 20m as shown by the green areas in that plot. 
Coaches can use this information to understand different opponents’ attacking strengths 
and develop defensive strategies to face them. 
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Figure 6.8: Catalans smooth pitch surface plot from team defending model. Green areas 
represent higher value for more favourable event (i.e. lower probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
Figures6.7,6.8,6.9show smooth pitch surface plots for the team defending models 

(Pµ (s) for all s ∈ S and EPVµ ) for Castleford, Catalans and Wigan. These models 
def def 

represent the actions of all opposition teams against the nominated team. As such, the 
colour scheme is reversed to provide a true representation of the teams’ defensive ability 
(i.e. whereas an increased probability of scoring no points is bad and coloured red when 
attacking, it is good and coloured green when defending). Castleford’s plot (Figure6.7) 
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Figure 6.9: Wigan smooth pitch surface plot from team defending model. Green areas 
represent higher value for more favourable event (i.e. lower probability of all events 
occurring except No Points) compared to whole league model. 4pt Try and 6pt Try refer 
to unconverted and converted tries respectively. 

 
indicated a greater probability of no points being scored with actions close to their try 
line and a lower chance of drop goals and penalties being scored across the pitch, but 
an average to greater than average chance of opposition teams scoring a converted try 
everywhere except on the sides of the pitch near Castleford’s try line. Taken together 
these results potentially indicate that Castleford are susceptible to direct attacks from a 
greater distance as fewer actions near their try line are successful but actions outside of 
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their 20m are more valuable. Catalans’ plot (Figure6.8) shows large areas of better than 
average defence, but suggest the defence was worse than average on the left side of the 
pitch (their right sided defenders) in their own 20m with respect to converted tries and on 
the right side of the pitch where teams had a greater probability of scoring penalty goals in 
the Catalans half. Wigan’s plot (Figure6.9) shows above average defence with regards to 
both converted and unconverted tries. Furthermore, they show a much greater probability 
of no points being scored by opposition teams. Opposition teams have a greater than 
average probability of scoring penalty goals against Wigan across the majority of the 
pitch. In both cases, the decision taken by opposition teams to score penalty goals could 
be an indication that teams have been unable to penetrate the strong defensive line and 
score tries. As with the attacking plots, coaches can use this information to devise strategic 
plans to beat the opposition. 

 
6.3.2.1 Expected Points Scored 

Alongside visual inspection of attacking and defending performances, an expected points 
scored measure was developed to provide an understanding of the underlying attacking 
performances achieved by teams. Table6.6provides details of the expected points scored 
and actual points scored for each team across the 2021 Super League season. The average 
difference between points scored and expected points scored was 30.27 when the team’s 
attacking EPV (EPVµ ) was used and 30.97 when the opposition team’s defending EPV 
(EPVµ ) was used. These differences are likely due to the smoothing induced by the KDE 
models. Of the top 6 teams reaching the playoffs, only Wigan did so without exceeding 
their expected points scored by more than the average amount. Wigan were clearly the 
best defensive team in the league in 2021, as shown by their defensive EPV plot6.9, 
and so may have been able to win matches despite their poor attacking performances 
as they reduced the points any opposition team was able to score. Interestingly, in the 
2022 season, Wigan were the top points scorers in the league suggesting that the coaches 
were able to solve the problem of converting their underlying attacking performances into 
actual points scored. 
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Table 6.6: Expected points scored across the season compared to actual points scored at 
the team overall level. Exp Att refers to expected points scored as computed using the 
attacking team EPV; Exp Def refers to expected points scored as computed using the de- 
fending team EPV; Diff refers to the difference between points scored and the expected 
points scored (positive means more points were scored than expected). Teams are pro- 
vided in league position order. 

 
 

Team Points Scored Exp Att Att Diff Exp Def Def Diff 
Catalans 726 563.80 162.20 527.75 198.25 
St Helens 572 492.93 79.07 480.10 91.90 

Warrington 588 476.44 111.56 470.55 117.45 
Wigan 387 492.82 -105.82 540.34 -153.34 
Leeds 572 528.10 43.90 528.05 43.95 

Hull KR 526 449.15 76.85 448.29 77.71 
Castleford 413 411.72 1.28 404.35 8.65 

Hull 409 412.10 -3.10 410.99 -1.99 
Huddersfield 460 452.61 7.39 456.10 3.90 

Wakefield 482 447.81 34.19 459.56 22.44 
Salford 402 415.22 -13.22 416.78 -14.78 
Leigh 356 387.10 -31.10 378.50 -22.50 

 
 

6.3.3 Evaluation of Player Performances 

To evaluate player performances, a novel actual vs expected (AE) player rating was pro- 
posed (Equation6.12). The AE ratings represent the average points contribution per 
match for a player, above or below the expected points gained. Table6.7rates the top 
20 players in Super League 2021. The same reference statistics are provided as in Chap- 
ter4(tries, try assists, metres gained and goals scored). A wider variety of positions are 
included in the AE ratings compared to the action impact ratings in Chapter4, highlight- 
ing the benefit of valuing how well an action was performed, rather than valuing a player 
performing the action. The ratings have good face validity as one of the best players in 
the AE ratings was awarded the Man of Steel trophy given to the best player in the league 
and the Young Player of the Year for the 2021 Super League season is also in the top 20 
rated players. 

The model was presented to coaches at Leeds Rhinos, a team competing within the 
Super League. The results were widely praised. Visual inspection of the team attacking 
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Table 6.7: Top 20 player ratings as assessed by the AE ratings (Equation6.12). Tries, 
Try Assists, Metres and Goals are provided as references of statistics currently provided 
for player performances. To protect anonymity, reference statistics are provided based on 
the whole season as: T-5 (top 5); T-10 (top 10), T-20 (top 20) and 20+ (outside top 20). 

 
Player Position AE Rating Tries Try Assists Metres Goals 
276 Full Back 8.21 T-20 T-5 20+ 20+ 
19 Winger 6.67 T-5 20+ T-5 20+ 

6335 Stand-off 6.35 20+ 20+ 20+ T-5 
1004 Scrum Half 6.10 20+ 20+ 20+ 20+ 
433 Full Back 4.96 20+ T-10 20+ T-5 
158 Winger 4.82 T-5 20+ T-10 20+ 
188 Centre 4.78 T-5 20+ T-5 20+ 
1249 Hooker 4.37 20+ 20+ 20+ 20+ 
92 Scrum Half 3.91 20+ T-5 20+ 20+ 

1281 Loose Forward 3.86 20+ 20+ 20+ 20+ 
406 Loose Forward 3.82 20+ 20+ 20+ 20+ 
371 Winger 3.37 T-20 20+ T-20 20+ 

8 Prop 3.33 20+ 20+ T-10 20+ 
282 Second Row 3.28 20+ 20+ 20+ 20+ 

20528 Winger 3.11 T-5 20+ T-5 20+ 
22852 Full Back 3.10 T-10 T-20 20+ 20+ 

5 Winger 3.08 T-20 20+ 20+ 20+ 
26 Hooker 2.96 20+ 20+ 20+ 20+ 

440 Loose Forward 2.88 20+ 20+ 20+ 20+ 
988 Stand-off 2.81 20+ 20+ 20+ 20+ 

 
 

and defending plots identified elements that they agreed with anecdotally (Wigan’s poor 
attacking prowess and Catalan’s weakness on the right side of their defence) and an el- 
ement that they hadn’t considered (Castleford’s left sided bias). They approved of the 
expected points scored as a potential performance measure and pointed out Wigan’s im- 
proved performance in the league in 2022 after seeing it. However, they would prefer it to 
be used on a match by match basis rather than across a season, which may be problematic 
due to the low sample sizes each match. The player ratings provided 19 names that they 
agreed with and one name they wouldn’t have expected, but suggested was likely to be in 
the top 20 players at the end of the season due to the number of touches of the ball he was 
likely to have per possession, which was not controlled for in the rating. 
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Preprocessing and weights calculations were completed using bespoke Python scripts 
(Python 3.7, Python Software Foundation, Delawere, USA). PyMC3 v3.11.4 (Salvatier 
et al.,2016) was used to conduct all Bayesian analyses. 

 
6.4 Summary 

This study improved upon the work presented in Chapter5by proposing a novel EPV 
model which can be used to evaluate team and player performances in rugby league with- 
out the need for additional contextual information. A Bayesian Mixture Model provided 
a smooth pitch surface of possession outcome probabilities and EPV, improving upon 
the zonal aggregation methods previously used (Chapters3and4;Cervone et al.(2016); 
Chan et al.(2021);Kempton et al.(2016)). Similarly, this was the first model to estimate 
multiple individual possession outcome probabilities in a single model rather than com- 
bining them numerically (Cervone et al.,2016;Chan et al.,2021;Kempton et al.,2016) 
or estimating them in separate models (Decroos et al.,2019). Two novel metrics were 
presented: expected points scored to evaluate underlying team performances and AE (ac- 
tual vs expected) player ratings to evaluate player performances. Visual inspection of the 
smooth pitch surface plots was also shown to be an extremely useful method of gaining an 
understanding of team strengths and weaknesses, in both attacking and defensive terms. 
The insights from the model can be used to produce tactical strategies, monitor underlying 
team performances and enhance player recruitment. 

The work was presented to coaches at Leeds Rhinos, who provided an impact state- 
ment for the work (AppendixD). The coaches were impressed and validated the work 
through their anecdotal understanding of the sport at both a team and player level. The 
usability of the model was praised (”the ability to do this in an efficient and reliable way, 
which the work provides is invaluable”, ”this is something I would look to embed into our 
daily analysis procedure”), as was the reliability - particularly with respect to unexpected 
findings (”there were some surprising and novel results presented, which add value to 
the current coach and analyst knowledge”). They suggested several future directions for 
the work, including valuing different actions similar to the work shown in Chapter4and 
reparameterising the model for different elements of the game, for example evaluating 
the metres gained by the end of a play for playmakers or the metres gained before the 
opposition’s first tackle for kickers. It would not have been possible to make any of these 
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changes in the timescale of this PhD due to the low data availability, but with a further 
season of data, it would be possible to adapt the framework in the future. 

Future work may now wish to apply the model to other sports and extend it to value 
actions, not just the location of the action (akin to Q-values within Markov Models). The 
flexibility of the model ensures it is ideally suited to invasion sports such as rugby union, 
football or hockey. However, whether an individual would want to use this method in 
sports with a single scoring possession outcome is questionable as a simpler binary model 
would likely perform just as well. The true benefit of using this model would be to estab- 
lish three outcome measures for these sports - possession goal, no goal, opposition goal. 
This is similar to previous work in football (Decroos et al.,2019) but using the Bayesian 
Mixture Model approach described in this chapter, it would be possible to evaluate the 
probability of all three outcomes in a single model, rather than separate models for scor- 
ing or conceding. Similarly, the model could be extended to consider different actions and 
generate a form of Q-value for each action. The issue with adapting the method in this 
manner is the evidence based approach followed by Bayesian analytics which means that 
if an action hasn’t been attempted in a specific location, it will take the prior value. In the 
case of goal kicking, this could be problematic as a penalty goal wouldn’t be attempted 
from the possession team’s 20m line (i.e. 80m away from the goal), but it could have a 
higher value than a penalty goal attempted from 40m out, wide on the touchline, if these 
penalties are missed more frequently than scored. Manipulating the priors to account for 
this is possible but this detracts from the methods here which have systematically allowed 
the models to estimate the results based on the data available. 
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Chapter 7  
Conclusions 

 
In this chapter, the contributions of the four studies produced in this thesis are highlighted. 
The limitations of the research and its future directions are also considered. The aim 
of this PhD project was to develop new methodologies to understand player and team 
performances in rugby league using match event level data. To meet this aim, five clear 
objectives were defined in Section1.3: 

O1Investigate existing methodologies of evaluating player and team performance in 
team sports, focusing on their application to rugby league 

O2Apply and adapt existing methodologies and metrics evaluating player and team 
performances in team sports to rugby league 

O3Validate adapted versions of existing methodologies and metrics for usability and 
reliability in rugby league 

O4Develop novel methodologies and metrics to evaluate player and team performances 
in rugby league 

O5Validate proposed methodologies and metrics for usability and reliability with re- 
spect to evaluating player and team performances in rugby league 

These objectives were met by different chapters within the thesis: the literature review 
in Chapter2met objective 1; Chapters3and4met objective 2 and partially met objective 
3; Chapter5partially met objectives 2, 3, 4 and 5; and Chapter6met objectives 4 and 5. 
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The sections below outline the context surrounding the research in this thesis, the research 
contributions for each study and how they met the objectives described above. Limitations 
of the work and directions for future research are also discussed. 

 
7.1 Rugby League 

The literature review in Chapter2made it clear that rugby league is a unique sport with re- 
spect to the expected possession value (EPV) model literature due to its low data availabil- 
ity (no tracking data available, only play by play data available in 2019 season, different 
action by action datasets available in 2020 and 2021) and unique rules (six play attack- 
ing sets and multiple possession outcomes). These unique elements ensured it was not 
possible to adapt the most impressive EPV models currently available for use in rugby 
league. The methods which could not be used in this study included: deep learning 
(Fernández et al.,2021) and deep reinforcement learning approaches (Liu et al.,2020; 
Liu and Schulte,2018); a Bayesian approach requiring tracking data (Cervone et al., 
2016); and a CatBoost machine learning algorithm, which used 18 times more data than 
that available over the complete duration of this thesis (Decroos et al.,2019). However, 
there were some EPV models available which could be adapted and improved to evalu- 
ate player and team performances in the sport (Chan et al.,2021;Kempton et al.,2016; 
Singh,n.d.). These approaches used Markov Reward and Decision Processes to evaluate 
player and team performances but arbitrarily selected their zone sizes, which may have 
influenced the results they obtained. 

At the onset of this PhD, no previous studies had used action by action data to evaluate 
player and team performances in rugby league. Two studies had considered play by play 
data (Holbrook et al.,2019;Kempton et al.,2016) but neither had provided a methodology 
or metric through which player performances could be evaluated. As such, there was 
no framework through which the results of this thesis could be compared. Given this 
background, and the limited data available in the sport, the focus of this thesis was to 
continually improve the methodologies used rather than optimise earlier algorithms and 
models. Theoretically, it would have been possible to use all three seasons of data together 
to optimise the work from earlier chapters, but this would have been problematic from a 
preprocessing perspective due to the different action definitions across the three seasons. 
Consequently, each model was developed using slightly different data and could only be 
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compared with real performances and coaches’ feedback for validation purposes. The 
decision to develop the methodologies in this way was vindicated by the final Bayesian 
EPV model, which could not have been developed if the 2021 data was used to further 
extend the Markovian models of Chapters3and4. The Markov models of Chapters3 
and4only received partial validation by experts and there was no clear method through 
which they could be improved within the constraints of this thesis. Conversely, the final 
Bayesian EPV model, proposed in Chapter6represented a significant improvement on 
the Markovian approach and received complete validation from professional experts. 

 
7.2 Research Contributions 

This section outlines the four research studies completed within the thesis. An overview 
of each study is given and the key contributions are detailed. The extent to which the 
study meets the objectives defined in Section1.3is also evaluated. 

 
7.2.1 Markov Reward Processes for the Quantification of Team At- 

tacking Performances 

In Chapter3, the works ofKempton et al.(2016) in rugby league andSingh(n.d.) in 
football were applied, adapted and extended. Markov Reward Processes (MRP) were 
used to estimate the value of different locations on the pitch with respect to the points 
outcome at the end of the possession using play by play data. Six different state spaces 
were considered within the MRP framework, two with fixed zone sizes (EPV-308 and 
EPV-77) and four with statistically computed zone sizes (EPV-37, EPV-19, EPV-13 and 
EPV-9). The Kullback-Leibler Divergence was used to empirically evaluate the models’ 
ability to reproduce future team attacking performances, identifying the EPV-19 as the 
most suitable model for use within rugby league. Z-score analysis was proposed as a 
novel method of evaluating team attacking performances across the 2019 Super League 
season. The study was published in PLOS One and presented to the England Rugby 
League Performance Unit. 

The study made two key contributions to the literature. First, it applied and adapted 
the previous literature (Kempton et al.,2016;Singh,n.d.) to a new dataset within rugby 
league. The work was adapted by empirically evaluating different zone sizes with respect 
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to their ability to reproduce future team attacking performances. This work had never 
previously been completed and identified the EPV-19 as the most suitable model for use 
in rugby league. This is because it provided the best tradeoff between representation of 
future match performances and granularity of results. Second, the work ofKempton et al. 
(2016) was extended by proposing a novel method through which team attacking perfor- 
mances could be evaluated using z-score analysis of the EPV-19 results. This analysis 
allowed a heat map to be produced, identifying areas on the pitch which were valuable 
to different teams. It could be used as a starting point for the development of tactical 
strategies against different oppositions. 

By applying, adapting and extending previous literature (Kempton et al.,2016;Singh, 
n.d.), Chapter3met objective 2 of the project. However, after presenting the results to 
the England Rugby League Performance Unit though, it was clear that the model only 
partially met objective 3. The unit thought the spatial insights produced by the heat map 
were reliable and excellent, but questioned the long-term usability of the model due to its 
use of play by play rather than action by action data. 

 
7.2.2 Markov Decision Processes for the Evaluation of Player and 

Team Performances 

In Chapter3, spatial data were only available at a play by play level, which restricted 
the analyses that could be conducted; for Chapter4, action by action spatial data became 
available. Therefore, Chapter4extended the work of Chapter3by using Markov Decision 
Processes to estimate action values using the EPV-19 zones, applying a previous idea in 
football (Singh,n.d.). Action impact ratings were used to evaluate player performances, 
adapting previous research in ice hockey (Routley and Schulte,2015). Context nodes 
were also adapted from ice hockey (Routley and Schulte,2015) and football (Decroos 
et al.,2019), providing further detail surrounding player performances and enabling indi- 
vidual team MDPs to be produced. The work was presented at UKCI and subsequently 
published in Advances in Intelligent Systems and Computing. It was also presented inter- 
nally to the Sports Science Department at Leeds Beckett University. 

The key contribution of this study was that it extended previous work in rugby league 
(Chapter3;Kempton et al.(2016)) by providing the first action by action analysis of 
player and team performances in rugby league. This allowed much greater detail to be 
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provided within the evaluation of player and team performances, resulting in much more 
usable results. Using the EPV-19 model identified in Chapter3, action values were gen- 
erated for every zone on the pitch, allowing their value to incorporate spatial context for 
the first time in rugby league. In addition to this, the study adapted ideas from ice hockey 
(Routley and Schulte,2015) and football (Decroos et al.,2019;Singh,n.d.) and vali- 
dated their use within rugby league. The adaptation of action impact ratings (Routley 
and Schulte,2015) to produce player ratings was evaluated. Furthermore, context nodes 
were adapted from ice hockeyRoutley and Schulte(2015) and football (Decroos et al., 
2019), allowing further insights to be produced with respect to these player ratings (e.g. 
understanding if a player performs better when their team is losing). Context nodes were 
also used to produce individualised team state, action values. These values provided in- 
sight into different playing styles between teams, which could be used to produce tactical 
strategies against future opponents. 

Although producing more advanced results than Chapter3, the work conducted in 
this chapter still constituted the application and adaptation of previous methodologies and 
metrics, so like Chapter3, it met the requirements of objective 2. After consultation with 
the Sports Science Department at Leeds Beckett University, it was agreed that the results 
of this study improved upon those of Chapter3, particularly with respect to the team per- 
formance insights, which were considered both usable and reliable. However, the player 
ratings’ reliability was questioned. Together, the results of Chapters3and4completely 
fulfil objectives 2 and 3 of this thesis by applying, adapting and extending previous liter- 
ature. However, both studies were limited by their zone-based analyses, which reduced 
their reliability and usability in practice. It was therefore clear that adopting approaches 
which provided smooth pitch surfaces was necessary when novel methodologies and met- 
rics were developed, to maximise their reliability and usability in practice. 

 
7.2.3 Kernel Density Estimation and Wasserstein Distance Evalua- 

tion of the Spatial Trends of Team Attacking Performances 

The key issue with the zone-based analyses conducted in Chapters3and4was the size of 
the zones. This was shown by the player ratings systems, where a player could run 59m 
towards the opposition try line and receive the same action value as a player who was 
forced 10m backwards if both players started and ended in the same zone. The logical 
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solution to this valuation problem was to provide a smooth pitch surface, which valued 
every location on the pitch differently. Chapter5began this process by simplifying the 
research question to consider only the location of actions on the pitch, not the value gen- 
erated by the action or location. Adapting ideas previously considered at a player level in 
American football (Mallepalle et al.,2020), Kernel Density Estimation was used to pro- 
vide a smooth pitch surface describing the probability of a team controlling the ball in any 
given location. By using a standardised bandwidth at three levels of data (whole league, 
team overall and team-opponent subsets), it was possible to provide direct comparisons 
regarding the spatial trends of team attacking performances between and within teams for 
the first time. The work ofMallepalle et al.(2020) was extended by developing two novel 
metrics from the Wasserstein distance to provide these comparisons: the normalised axis 
Wasserstein distance and the directional Wasserstein distance. Together, these metrics 
were able to visualise the direction or axis along which teams differed from each other in 
simple quadrant plots, which could be used for benchmarking purposes. The work was 
presented at UKCI and to coaches at Leeds Rhinos Rugby League club who were ex- 
tremely complimentary and provided an impact statement surrounding its use in practice 
(AppendixD). 

The results of the study provide two key contributions to the literature. First, the work 
ofMallepalle et al.(2020) was applied and adapted to provide the first implementation of 
KDEs to quantify the spatial trends of team attacking performances with a smooth pitch 
surface in any sport. Second, the work was extended to provide novel metrics through 
which differences in the spatial trends could be evaluated and visualised. To do this, the 
Wasserstein distance was used to compare KDEs for the first time in sport. Manipulating 
the Wasserstein distance provided novel insights into the differences along each axis (i.e. 
does a team differ from the league average in terms of pitch width or height?) via the nor- 
malised axis Wasserstein distance, and directional differences (i.e. does a team perform 
more actions on the left side of the pitch or near their own try line?) via the directional 
Wasserstein distance. These insights provide valuable bench marking tools for clubs and 
have significant potential to improve tactical strategy preparations, thus providing assis- 
tance to coaches in both long and short-term decision making. 

By adapting and extending the work ofMallepalle et al.(2020) to quantify the spatial 
trends of team attacking performances, this chapter met objective 2 of the thesis; by de- 
veloping novel metrics from the Wasserstein distance through which differences in these 
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spatial trends of attacking performances could be quantified and visualised, objective 4 of 
the thesis was partially met. Objectives 3 and 5 were partially met when coaches at Leeds 
Rhinos provided validation of both the usability and reliability of the results (Appendix 
D). In all cases, the objectives were partially met because, in this simplified analysis, only 
team performances were considered. 

 
7.2.4 A Bayesian Approach to the Evaluation of Team and Player 

Performances 

Building upon the success of Chapter5, Chapter6produced a novel EPV model with a 
smooth pitch surface in rugby league. Previous approaches providing smooth surfaces 
(Fernández et al.,2021;Liu et al.,2020) could not be adapted for use in rugby league due 
to data availability issues. To overcome these issues, a novel Bayesian Mixture Model 
approach was proposed, whereby the weights for each centre were devised using linear 
and bilinear interpolation techniques. The model estimated individual possession out- 
come probabilities and used them to derive an EPV measure. Models were produced at 
the whole league, team attacking and team defending levels allowing visual inspection 
of team strengths and weaknesses with respect to different point scoring outcomes. Two 
novel metrics were produced from the model: expected points scored, which combined 
the results of this study with the results of Chapter5to evaluate team performances, and 
actual versus expected player ratings, which were used to evaluate player performances. 
The work was presented to coaches at Leeds Rhinos Rugby League club who were im- 
pressed and provided an impact statement surrounding its use in practice (AppendixD). 

The key contribution of this study was the development of a novel EPV model using an 
approach not previously considered in any sport. The Bayesian Mixture Model approach 
used linear and bilinear interpolation techniques to produce a unique set of weights for 
33 centres around the pitch based on their proximity to each x, y location on the pitch. 
These weights were used to estimate the probability of individual possession outcomes 
for every x, y location on the pitch producing a smooth pitch surface. The ability to 
estimate individual possession outcomes in the same model for the first time is also an 
extremely important addition to the literature. A secondary contribution of the study was 
the development of two novel performance metrics. Expected points scored combined 
the results of this study with the results of Chapter5to evaluate the underlying attacking 
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performances of teams. Actual vs expected player ratings highlighted the players whose 
actions contributed to their team scoring points in matches. Both the model and the re- 
sults have significant ability to influence the decisions made by coaching staff regarding 
performance evaluation, tactical strategy development and player recruitment. 

The completely novel Bayesian Mixture Model described by this study allowed for the 
estimation of individual possession outcomes in the same model, whilst also producing a 
smooth pitch surface. This novel methodology, alongside the novel metrics devised from 
its results ensure this chapter completely met objective 4 of this project. Furthermore, the 
positive feedback from coaches after the work had been presented ensured that it also fully 
met objective 5 of this PhD project, providing usable and reliable results for both team 
and player performances, which could significantly impact long and short-term decision 
making at rugby league clubs. 

 
7.2.5 Summary of contributions 

Chapters2to6met all objectives of this thesis. However, although Chapters3and4 
were shown to meet objective 3 (validation of existing methods and methodologies), it 
was clear that limitations within the existing methodologies and the data available within 
the sport limited their reliability and usability in practice. The key issue with these studies 
was their zonal approach to analysis so novel methodologies and metrics were developed 
in Chapters5and6. These methodologies used a smooth pitch surface to evaluate player 
and team performances, providing significantly more usable and reliable results. 

Of the four models produced in this thesis, the EPV model described in Chapter6is 
the most comprehensive. The Bayesian Mixture Model approach improved upon the zonal 
approaches previously adopted in the literature (Chapters3and4;Cervone et al.(2016); 
Kempton et al.(2016);Singh(n.d.)) to provide a smooth pitch surface. The smooth pitch 
surface enables team and player performances to be evaluated in much finer detail than 
ever before in rugby league. Furthermore, the model estimated individual possession out- 
come probabilities in a single model for the first time in the literature providing significant 
tactical insight into locations where teams may be more likely to score different points. 
Previous approaches have either aggregated possession outcomes numerically, losing this 
information (Chapters3and4;Cervone et al.(2016);Chan et al.(2021);Kempton et al. 
(2016)) or estimated them in separate models (Decroos et al.,2019), which is an unsuit- 
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able approach within rugby league given the five possible possession outcomes for each 
team. Finally, the novel metrics produced from the Bayesian EPV model provide signifi- 
cantly greater insights than the first two studies of this thesis. The expected points scored 
metric, which utilises the KDE results from Chapter5, measures underlying team per- 
formances, incorporating the spatial context of the match and the attacking or defending 
team’s abilities into a single value. Utilising this metric alongside the novel Wasserstein 
distance metrics from Chapter5provides significant insight into team performances. Sim- 
ilarly, the actual vs expected player ratings produced from the Bayesian EPV model were 
shown to be much better than those produced in Chapter4as they considered the outcome 
of the possession, rather than singling out those players who frequently attempted high 
value actions, regardless of how successful they were. 

 
7.3 Limitations 

Throughout the duration of this process, the limitations of the models produced were dis- 
cussed and used to help determine the direction of future studies. This section outlines the 
key limitations of each model and discusses the issues researchers may wish to consider 
if applying, adapting or extending these models in the future. 

The overarching limitation of the thesis was data availability, which dictated the scope 
of the models proposed and their usefulness. Although other studies in the literature were 
able to access multiple millions of data points (Cervone et al.,2016;Decroos et al.,2019; 
Fernández et al.,2021;Liu et al.,2020), rugby league only has small data sets (approxi- 
mately 100,000 data points per season). Indeed, in Chapter3, action by action data wasn’t 
currently available. The gold standard for EPV is a model which can employ player track- 
ing and action by action match event level data (Cervone et al.,2016;Fern ández et al., 
2021), but if that is not available a more suitable modelling method should be chosen and 
the limitations of the method should be understood. For example, in Chapter3, it was 
possible to evaluate team performances based on the sequence of location movements for 
each play-the-ball, but the lack of action by action data ensured it was not possible to 
evaluate player performance on an action by action basis like in other chapters within the 
thesis. Researchers and practitioners should be aware of this limitation when deciding 
which model to use within their context. 

The key limitation of the Markov models employed in Chapters3and4was the zones 
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used to establish state values. Adopting a zonal system has multiple benefits, including 
ease of computation and aggregation of data, which can increase confidence in the results. 
However, the size of the zones is important. Although the EPV-19 model provided zone 
sizes, which were best able to replicate future team attacking performances, this came 
at a cost of extremely large zone sizes. Extremely large zone sizes may be useful when 
trying to understand the spatial element of a team’s attacking performances, but when 
attempting to evaluate individual player performances based on the actions taken, they 
did prove problematic. This is because a player needing to move 60m forwards to move 
to a different zone is an unrealistic expectation to obtain a small performance gain. The 
zone sizes used in basketball (Cervone et al.,2016) were much smaller because the court 
is much smaller and therefore were able to represent the value of actions much more 
accurately than those utilised in Chapters3and4of this thesis. Researchers should be 
cautious about the zone sizes they use and understand the influence this can have on their 
results. 

In Chapter5, the key limitation of using KDE and Wasserstein distance analysis was 
the lack of consideration given to the value of performing an action in a specific location. 
As an initial movement towards adopting a smooth pitch surface, this was an accepted 
limitation from the outset of the study but the method developed provided results which 
could be used alongside those of Chapter6to provide an expected points scored team 
performance metric. There is also significant scope to consider these probabilistic models 
to understand player or team tendencies where value gained is not the most important 
element. For example, understanding the tendency of a tennis player to hit the ball to 
different locations with his/her serve could also be considered with this method and would 
be extremely valuable for the tactical considerations of a tennis player when preparing for 
upcoming matches. Although this thesis is predominantly based around valuing player 
and team performances through the use of EPV models, the work presented in Chapter5 
is extremely valuable in practical terms. Researchers and practitioners should be aware 
that methods that understand the tendencies of teams or players can also provide useful, 
actionable insights. 

The Bayesian Mixture Model considered in Chapter6provides a comprehensive 
model within the constraints of the data available, which was able to improve upon the 
limitations of previous models. However, by adopting an evidence based approach to pa- 
rameter estimation, it could be limited by the prior distributions set. This is because in 



7.4 Future Work 

186 

 

 

 
 

a different analysis, if no evidence is provided, the estimate will not shift from the prior 
distribution, which could result in an unrealistically high or low parameter value. This 
wasn’t an issue within the location based model proposed in Chapter6, but if extending 
the model to include actions in the same hierarchical manner it could be. Using a global 
prior of this type for goal kicks for example could result in kicks which take place behind 
the half way line being valued higher than those in front of the half way line. This situ- 
ation could occur if there is evidence that those in front of the half way line are missed 
with a greater probability than the prior distribution suggests, but there is no evidence of 
that for those behind the halfway line because they are not attempted. Researchers and 
practitioners should be aware of the important contextual factors that can influence the 
prior distribution in these situations. 

 
7.4 Future Work 

The work presented in this thesis provides a valuable enhancement to the current literature 
considering EPV models in sports, as well as being completely novel within rugby league. 
It has been well received by sports practitioners and within the research community (as 
evidenced by the publication and presentation record). However, there are still opportu- 
nities to improve it. Two key areas where future work could be focused are: valuation of 
actions and adaptation to other outcomes or sports. 

 
FW1Valuation of actions refers to evaluating the definition of a successful or useful ac- 

tion. This thesis has focused on the points scored by the end of the possession 
(whether aggregating in the Markovian approaches or estimating probabilities in- 
dividually in the Bayesian approach) as the definition of successful actions. This 
decision was taken as points are the most important outcome of possessions within 
rugby league - the more points a team scores or a player contributes to, the more 
likely the team is to win matches and be successful. However, not all players’ key 
role is to score points. For example, the key role of props and second rows is to gain 
metres early in the attacks to progress the team into positions where they can score 
tries (Table2.3). The majority of actions taken by these players occur in the posses- 
sion team’s half meaning it is unlikely that they will produce many tries so using the 
actual vs expected performance ratings identified in Chapter6for these players is 



7.4 Future Work 

187 

 

 

 
 

an unfair point scoring system. A better method of evaluating these players may be 
to change the possession outcome probabilities to an estimation of metres gained. 
Similar comments could apply to the half pair and hooker, who act as playmakers 
and so perform an action in virtually every play of their team’s possession (Table 
2.3). A more appropriate action valuation for these players could be speed of play, 
or a combination of metres gained and EPV dependent on the location on the pitch. 
The flexibility of the Bayesian methodology employed in Chapter6would allow 
any of these changes to be made as desired by coaches. 

FW2Adaptation to other outcomes or sports refers to whether the model can consider 
other tactical elements or be adapted to other sports. The former of these con- 
siderations could be extremely interesting - for example, can the probabilities of 
different actions be considered based on the location of the ball and the previous 
action? This information would be extremely valuable to coaches and is provided 
in sports with much higher data availability (Fernández et al.,2021), but it’s not im- 
mediately clear how the EPV model in Chapter6could be adapted to provide this 
information. The second consideration refers to whether the Bayesian model could 
be adapted to other sports. The flexibility of the framework means that it could, but 
it wouldn’t always be appropriate. For example, the approach could easily be used 
in rugby union or American football, which follow similar episodic approaches to 
rugby league and have multiple point scoring outcomes. However, in sports such as 
football or netball, where only a binary possession outcome is present (i.e. goal or 
no goal), it may not be necessary to adopt the EPV model proposed in Chapter6un- 
less the definition of possessions is changed to incorporate the next scoring action, 
rather than the end of the current attacking possession. In this situation, the model 
could estimate the probabilities of no score (i.e. half/full time), possession team 
score or opponent score in a single model. Adapting this model to football may 
provide a better solution to the current method of estimating probabilities for both 
teams, which uses individual models for scoring/conceding goals (Decroos et al., 
2019). An alternative method through which the model could be applied to other 
sports is to gain tactical insights regarding specific possession ending actions from 
any given location on the pitch. For example, in its current format it could be used 
to evaluate the probability of a team shooting, crossing or being tackled at the end 
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of its possession conditional on its location on the pitch. Similarly, in tennis it could 
be used to evaluate the probability of players selecting a specific type of shot (e.g. 
top spin forehand, top spin backhand, forehand drop shot, forehand slice, backhand 
drop shot, backhand slice etc.) conditional on their position on the court. 
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