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Abstract

This PhD study is based on considering the sequential nature of match
activity occurrences to understand the (physical) demand of games on
players as well as uncover players’ behavioural movement patterns during
competitive matches. It involves quantifying players’ external load (i.e.,
completed match activities) using movement patterns that provide infor-
mation on how players accumulated external load in contrast to existing
physical and technical-tactical performance indicators. The quantification
of external load helps with team and player improvement, training speci-
ficity and even talent identification and recruitment. Elite players of rugby
football league were considered as the participants of this PhD study be-
cause rugby league is a physically intense team sport where activities hap-
pen quickly and within a stipulated timeframe. Existing player movement
profiling frameworks were investigated which revealed the use of a se-
quential pattern mining algorithm to extract movement patterns. However,
the algorithm for extracting patterns in the existing player movement pro-
filing frameworks is found to have limitations such as the identification
of few movement patterns, providing only the longest common patterns
within a cluster of movement sequences while it discards other interesting
patterns. Furthermore, a review of sequential pattern mining algorithms
revealed none of the existing algorithms is suitable for player movement
profiling. The state-of-the-art algorithm for extracting closed contiguous
patterns (i.e., CCSpan) does not scale well on large data as well as data

i



with long rows of sequences. Also, the CCSpan algorithm is without a pa-
rameter to define a maximal length of extract patterns which is useful as a
sliding window. This PhD study’s contributions to the body of knowledge
include the development and optimisation of a novel pattern mining al-
gorithm for extracting user-defined length of frequent closed contiguous
patterns, called LCCspm (l-length closed contiguous sequential pattern
mining), among others. An intrinsic evaluation of the LCCspm algorithm
was considered in terms of speed and memory consumption performance
measures. Results revealed it is four, seven or ten times faster than the
state-of-the-art algorithm when tested on natural data in three different
use cases. An extrinsic evaluation of the LCCspm algorithm reveals and
validates that its movement patterns are best to profile players into playing
positions when compared to other distinct types of obtainable movement
patterns. Furthermore, this PhD study applied LCCspm and other arti-
ficial intelligence algorithms to discover signature movement patterns of
elite rugby league players per playing position, identify (key) movement
patterns as predictor variables for classifying players into playing posi-
tions, and later establish a set of movement performance indicator useful
for assessing players’ performance variability across playing positions. In
the broader scope of computing, this PhD study contributes LCCspm al-
gorithm as an advancement of pattern mining algorithms. The application
of LCCspm can be extended to other sports domains and challenges, al-
lowing for more accurate analysis and insights into player behaviour and
team dynamics. Additionally, LCCspm can be applied in any field where
the consecutiveness of items matters during the analysis of patterns.
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Chapter 1
Introduction

This chapter provides a brief overview of sports and sports analytics, it highlights the
role of wearable devices and the use of performance indicators in a sporting context.
It also introduces player movement profiling and its current challenges which motivate
the research conducted in this PhD study.

1.1 Background and Motivation

The act of participating in sporting activities is carried out among billions of people
across the globe (Perin et al., 2018). However, there is a category of people who partic-
ipate in various sports as professionals. This set of people is elite within their respec-
tive sports, as they train and compete professionally among themselves with respect
to the rules and regulations of their different sports. The sports industry (Goes et al.,
2021; Morgulev et al., 2018) is neither immune nor retrogressive to the development
and various applications of data, big data, and data science. Technology advancements
had found their way into the sports industry in order to help stakeholders (e.g., players,
coaches, managers and sports directors) optimally performed their respective responsi-
bilities (e.g., injury prevention and performance improvement), thereby making sports
analytics an interesting research area.

Sports analytics is a rapidly growing area under the broader scope of data science.
It involves the development and or application of various computational, mathematical
and/or statistical techniques, methods and algorithms (Goes et al., 2021; Morgulev
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et al., 2018) to often analyse sport-data. In the field of sports science, researchers and
practitioners are faced with several analytical problems including visualization (Hrovat
et al., 2015), regression (Whiteside et al., 2016) and classification (Ayala et al., 2019;
Van Eetvelde et al., 2021) among others. These analytical problems are primarily
based on characterizing team-sport training and competitions (Weaving et al., 2019)
towards understanding match demands on players (Colomer et al., 2020), detection
of teams’ tactics during competitive matches (Decroos et al., 2018), understanding
the differences and similarities between player positional groups (Razali et al., 2017;
Woods et al., 2018a) among others. Most of the research involving these analytical
problems is conducted on players participating in team sports. Team sports (Garganta,
2009) refers to any game played by two teams who oppose each other, where players
concurrently and directly interact among themselves to ensure the movement of a ball
or similar object to score points and prevent the opposition from scoring, in accordance
with the laid down rules of the game.

Regarding technological advancements, besides capturing match games using semi-
automated cameras, micro-sensors (i.e., gyroscopes, accelerometers and magnetome-
ters) containing global positioning systems (GPS) (Gabbett et al., 2011; Kupperman
and Hertel, 2020) are now available and integrated to collect the sports activities per-
formed by players during training or competitions. Through the use of these technolo-
gies, sporting activities are being recorded in different formats providing quantitative
and qualitative data. These data exist in video file format, comma-separated values
(.csv) files, text files and many other file formats. The existence of these data enabled
analyses for the purpose of discovering hidden or unknown valuable information con-
tained in the data (Mack et al., 2019; Sbrollini et al., 2019), which can be used in
various decisive capacities. These decisive capacities assist in players’ performance
improvement (Hrovat et al., 2015), injury prevention (Emery and Pasanen, 2019) and
talent identification and recruitment (Williams and Reilly, 2000) among others. It is
noteworthy to emphasise at this point that the obtained sports data are from athletes
considered to be experts and largely rewarded to perform at their respective individual
optimal levels.

In sports, the use of data collected via portable GPS units has become pivotal
to quantifying completed activities and movements (i.e., external load) performed by
team sports players. Physical indicators (as variables) are derived from GPS data (Gab-
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bett et al., 2011; Kupperman and Hertel, 2020) and used to quantify the external load
completed by players especially during competitions as one of the means to charac-
terize matches. These physical indicators of player movements (Weaving et al., 2019;
Whitehead et al., 2019) are reported in volumes, duration-based volumes and or as dis-
cretized threshold values (e.g., average match speed (m.min−1), 60 seconds- average
running speed (m.min−1), total distance covered (m)) and only account for the aggre-
gated accumulation of external load. GPS data also provide captured trajectory data of
players’ positions (i.e., longitude and latitude). Similarly, data from semi-automated
cameras and video are used to derive technical-tactical indicators (Kupperman and
Hertel, 2020; Whitehead et al., 2018) (as variables) to quantify the tactical and tech-
nical events completed by players as another means to characterize matches. These
type of indicators simply reports the counts of technical-tactical events e.g., pass, goal,
kick, shot and reception.

Sports practitioners widely used physical and technical-tactical indicators as the
means to ensure training prescription aspects (such as small-side games) replicate the
characteristics of competitive matches. However, physical indicators (Weaving et al.,
2019; Whitehead et al., 2019) are simply numeric descriptors of a single accumu-
lated external load, often chosen subjectively, non-specific (i.e., non-individualized)
and they typically aggregate the information across the whole match with little to no
context on how players accumulated the quantified external load. For example, the “to-
tal distance covered” physical indicator can hypothetically provide information such
as players A and B covered a total distance of 11km respectively, within a match or
at two different matches. However, the physical indicator (i.e., total distance covered)
does not provide information on how these players accumulated the quantified external
load. Similarly, technical-tactical indicators count single technical-tactical (Adeyemo
et al., 2022; Whitehead et al., 2021) events while they do not provide the activities
that happened before (and after) the counted event. Although sports big data contain
external load performed by players per fixture or during training that naturally hap-
pened in sequence, the majority of the existing methods for analysing sports data are
based on physical and technical-tactical performance indicators that completely disre-
gard the sequence of external load. It is important to consider the sequential order of
quantified external loads because it explains how external loads were accumulated and
also enables the derivation of exact match characteristics useful in training programme
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designs. The analysis of sports big data with respect to the sequence of external load
is important because it will also provide more granular information, for example, how
players A and B covered a total distance of 11km respectively will be uncovered or
explained. Hence, player movement profiling as an emerging and important area of
research in sport science offered an alternative view to characterizing team sports com-
petitions and training.

Player movement profiling (Sweeting et al., 2014, 2017) is now an important area
in sports analytics as its application will expand the boundary of discovered knowl-
edge. It is premised on the science of uncovering how players accumulate external
loads and how technical-tactical events are completed through the identification of
the behavioural movement patterns (i.e., group of movement activities) and identifica-
tion of the series of activities leading to an event as performed by players. Basically,
players complete and accumulate external load by performing some combinations of
movement activities including walking, jogging, running or sprinting while they accel-
erate or decelerate and make some changes in their directions. Also, technical-tactical
events are usually not performed by players in isolation. Uncovering how players ac-
cumulate external load during matches and identifying the group of frequent events
leading to an interesting technical-tactical event(s) will certainly replicate the (exact)
characteristics of competitive matches better than physical and technical-tactical indi-
cators. At the time of this research commencement, only two studies (Sweeting et al.,
2014, 2017) profiled the movement patterns of team sport players by finding frequently
occurring movement patterns but there is a gap for further investigation (especially
in regards to the algorithm for extracting patterns). Theoretically, player movement
profiling will provide practitioners with information for conditioning elite players for
match games, preparing junior-elite players for elite competitions, opposition analysis,
profiling players toward talent identification and development and events or movement
patterns leading to injury among others. In general, player movement profiling has the
potential of improving all applications of characterizing competitive matches.

Data mining (Pascu, 2018) and pattern mining (Nijssen, 2013) have been success-
fully applied for analysing sequential data in different fields such as genome sequenc-
ing(Rashid et al., 2012) and large vehicle trajectory analysis (Bermingham and Lee,
2020) among others. The pattern mining area of data mining had recorded the de-
velopment of various algorithms for finding patterns from a set of sequences. These
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algorithms are broadly categorised (Mabroukeh and Ezeife, 2010) into frequent item-
sets mining (for associative rule mining) and sequential pattern mining. The algo-
rithms for mining frequent itemset and associative rules (Fournier-Viger et al., 2017)
involve finding groups of items that share associations or correlations among them-
selves wherein item adjacency is not considered. Sequential pattern mining algorithms
(Fournier-Viger et al., 2017) are focused on discovering recurring subsequences or pat-
terns from very large sets of sequential data whose items must be ordered sequentially.
The fundamental difference between both categories of pattern mining algorithms is
that frequent itemsets mining and associative rule mining algorithms do not consider
the order of events whereas sequential pattern mining algorithms maintain the order of
events.

Due to the sequential nature of players’ movement activities and technical-tactical
events on the sporting field, the application of sequential pattern mining algorithms
fits player movement profiling in team sports. It would avail the identification of play-
ers’ behavioural movement patterns containing groups of activities that occurred in
sequential order as well as sequential events within a match that led to a technical-
tactical event. Concisely, the application of a sequential pattern mining algorithm can
produce movement patterns that quantify players’ external load sequentially and pro-
vide information on how external loads were accumulated. However, the generation of
false candidate patterns (Han et al., 2001; Srikant and Agrawal, 1996) serves as one of
the strongest limitations of existing sequential pattern mining algorithms. False can-
didate patterns are patterns generated by sequential pattern mining algorithms which
do not exist in a given set of sequences. Other limitations (Fournier-Viger et al., 2017;
Mabroukeh and Ezeife, 2010) include multiple scans of a set of sequences for mining
patterns, large numbers of joins, large-sized index lists of generated candidate patterns
which cost space and time, consideration of all possible occurrences of frequent sub-
sequences, expensive recreation of sets of sequences projections, time and memory
inefficiency and redundant frequent patterns among others. These highlighted limita-
tions and the need for a quick turn-around time for the extraction movement patterns
based on a predefined sliding window in a real-time application motivated this project.

This project is motivated to formulate, develop, validate and apply a novel compu-
tational method for player movement profiling by identifying movement patterns of a
physically intense team sport (Gabbett et al., 2010; Glassbrook et al., 2019) - Rugby

5



1.2 Thesis Aim and Objectives

Football League (RFL). It is an interdisciplinary research between Leeds Beckett Uni-
versity schools of “Built Environment, Engineering and Computing” and “Carnegie
School of Sport”. Elite RFL players were considered as the participants of this PhD
study because rugby league is a physically intense team sport where activities happen
quickly and within a stipulated timeframe. Players participating in RFL matches often
wear a portable GPS unit for collecting GPS data. The collected GPS data per fixture
are mainly characterised by a succession of movement activities performed by players
which are or can be recorded and or represented by sequence(s). The quantification of
RFL players’ external loads by extracting sequential movement patterns seems plausi-
ble to take advantage of the sequential occurrences of movement activities. Therefore,
this research explored player movement profiling by identifying movement patterns in
rugby league from GPS data on the grounds that those patterns are consecutive, fre-
quent but non-redundant and that the maximal length of extracted movement patterns
can be specified.

1.2 Thesis Aim and Objectives

The aim of this thesis is to propose and enhance methods to identify movement patterns
from rugby football league players’ GPS data. The required objectives to achieve this
aim are to:

• Investigate (the application of) existing methods for profiling team sport players’
movements as well as existing sequential pattern mining algorithms to uncover
their suitability for player movement profiling;

• Develop and optimise an algorithm for extracting frequent but non-redundant
consecutive (i.e., closed contiguous) patterns and conduct a performance evalu-
ation of the same with the state-of-the-art closed contiguous algorithm;

• Compare the proposed algorithm with existing player movement profiling frame-
works to identify the best type of movement patterns for profiling player move-
ment;

• Apply LCCspm algorithm to extract movement patterns to identify signature
movement patterns of each RFL playing position, classify players into all RFL
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playing positions while discovering sets of key movement patterns for such clas-
sification; and establish “Movement Performance Indicators” useful for players’
performance variability assessment and visualisation.

1.3 Data Collection and Ethical Approval

This study received the approval of the University Ethics Committee and obtained
written informed consent (See Appendix A) from the organisation representing all par-
ticipants (i.e. elite England rugby league players). The Global Positioning Systems
(GPS) data were obtained (from clubs through the Rugby Football League) and are
not available publicly. 10Hz GPS data of elite male Rugby Football League players
were collected via wearable sensors (Catapult S5, Catapult Innovations, Melbourne,
Australia) worn during matches during the 2019 and 2020 seasons. Other data were
available and assessed from a public repository.

1.4 Main Contributions

This PhD study contributes to the field of computing and sports analytics by developing
and introducing a novel sequential pattern-mining algorithm called LCCspm (l-Length
Closed Contiguous sequential pattern mining algorithm). LCCspm addresses the lim-
itations of existing methods and fulfils the criteria for a suitable algorithm in player
movement profiling. The LCCspm algorithm utilizes efficient data structures, includ-
ing dictionary and 2-tuple representations, along with a snippet-growth mechanism, to
generate and store frequent closed contiguous patterns. A unique technique called ”in-
verse characteristic” is employed to achieve lossless compression of frequent patterns.

Through extensive experiments on real-life datasets, the performance of LCCspm
is evaluated in terms of memory consumption, execution runtime, and scalability. The
results demonstrate that LCCspm outperforms existing algorithms by quickly iden-
tifying frequent closed contiguous patterns while consuming less computer memory.
Furthermore, the scalability experiment reveals that LCCspm effectively handles small
and large-sized sets of sequences, even with extremely long sequences, and accommo-
dates low support thresholds set by the user.
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The practical application of LCCspm for player movement profiling is validated in
the context of player position classification in rugby league. LCCspm-based movement
patterns were successfully utilized to classify players into tactically different positions,
showcasing its efficacy and accuracy, when compared to all other obtainable movement
patterns.

Additionally, various methods to apply LCCspm are demonstrated, including iden-
tifying signature movement patterns, extracting movement patterns and investigating
movement pattern values for classification modelling while identifying key movement
patterns, and developing Movement Performance Indicators (MPIs) to assess and vi-
sualize players’ performance variability.

Overall, this study contributes novel advancements in algorithm design, efficient
pattern generation and storage, lossless compression techniques, performance eval-
uation, and practical applications of LCCspm in player movement profiling. These
findings significantly enhance the understanding and analysis of player behaviour in
competitive matches, with potential implications for sports performance optimization
and decision-making strategies.

1.5 Thesis Structure

This PhD thesis is arranged into seven chapters and two appendices:

• Chapter 2 fulfils the first objective of this PhD study. This chapter presents an
overview of the data, its sources, and its availability in sports alongside the need
for advanced analytics algorithms and methods to process such data. A survey
of various applications of frequent pattern mining algorithms and machine learn-
ing algorithms in team sports is presented. A concise history and overview of
rugby league football are presented as well as thoroughly identifying interesting
research areas of the sport. The application of frequent sequential pattern mining
algorithms for player movement profiling and the classification of players into
positional groups in rugby league is identified as emerging research areas. A
review of the existing player movement profiling methods was conducted with
respect to the first objective of this PhD study. Also, four categories of sequential
pattern mining algorithms are reviewed - which justified the need for developing
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a novel algorithm for player movement profiling.

• Chapter 3 present the methodology of this PhD study. An overall experimental
framework of the study was presented and discussed which detailed the methods
implemented in subsequent chapters. Machine learning supervised algorithms
that are implemented for classification modelling tasks in sports and categories
of predictor variables are discussed. The methods and techniques involved in the
processes of classification modelling are also discussed.

• Chapter 4 propose the novel l-length closed contiguous sequential pattern mining
algorithm, with respect to four criteria of a suitable algorithm for player move-
ment profiling, and to fulfil the second objective of this PhD study. Basic con-
cepts and definitions of sequential pattern mining are presented. A novel sequen-
tial pattern mining algorithm was proposed and optimised. Also, evaluations of
LCCspm algorithm variants were conducted to test their performance for extract-
ing frequent closed contiguous patterns, in the bid to satisfy the fourth objective
of this PhD study. The algorithm and these performance results were presented
at International Conference on Machine Learning and Application (ICMLA) and
published in an online proceeding by The Institute of Electrical and Electronics
Engineers (IEEE) (Adeyemo et al., 2021).

• Chapter 5 focuses on identifying the best type of movement patterns for player
movement profiling, in the bid to fulfil the third objective of this PhD study. A
comparative analysis of patterns generated by LCCspm against patterns gener-
ated by other algorithms to profile the movement of rugby league players into
two tactically different playing positions was conducted. The results are cur-
rently published in arxiv preprint (Adeyemo et al., 2023) and submitted to a Plos
One journal.

• Chapter 6 focuses on the three applications of LCCspm movement patterns in
RFL. This fulfils the fourth objective of this PhD study. LCCspm was applied to
discover the signature movement patterns of each RFL playing position. Also,
LCCspm was applied to extract movement patterns useful as predictor variables
to classify rugby league players into nine playing positions. Investigation of
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appropriate movement pattern values for classification modelling was also car-
ried out. Sets of key and significant movement patterns useful for classifying
rugby football league players into nine playing positions were also identified via
further experiments. Additionally, a set of movement patterns was identified and
established as a movement performance indicator to assess players’ performance
variability over participated matches. The results of this chapter are submitted
to the 10th IEEE International Conference on Data Science and Advanced An-
alytics’2023 (Applications Track) and the 10th Workshop on Machine Learning
and Data Mining for Sports Analytics, 2023.

• Chapter 7 presents a summary of this PhD study. It highlights the contributions
of each chapter and shows how the objectives of the PhD study were met. The
practical implications of this PhD study were also highlighted, limitations were
presented and future directions for this body of work were discussed.
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Chapter 2
Literature Review

The aims of the literature review are, to: (1) provide a concise history and charac-
teristics of rugby league, uncover its data sources and availability, critically evaluate
the current knowledge base for characterising match demands on rugby league players
(relating to training programmes for player development, talent identification, and per-
formance variability assessment); (2) investigate the use of various machine learning
frameworks in team sport towards identifying interesting and emerging classification
problems in rugby league and common predictor variables; (3) investigate the current
state of applying pattern mining algorithms in all sporting contexts; and (4) discuss
and provide critical analysis of existing sequential pattern mining algorithms to jus-
tifies the need for a new sequential pattern mining algorithm for the identification of
player movement patterns.

2.1 Rugby League Football

Rugby league originated in the north of England during the late 19th century (Gardner
et al., 2015) and is played across various competition levels. It is popular and more
established in countries (Brewer and Davis, 1995; Meir et al., 2001) such as (in no
particular order) the United Kingdom, Australia, France and New Zealand. Rugby
league is a team sport where each opposing team fields thirteen players (and four inter-
changes), broadly categorized (Read et al., 2017; Till et al., 2017) into two positional
groups (i.e., ’forwards’ and ’backs’) or four subgroups (of nine individual playing po-
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Figure 2.1: Rugby League Playing Positions (RFL)

sitions) which are pivots (hooker, stand-off, scrum-half or half-back), outside backs
(fullback, centre, winger), back row (loose or lock forward, second row) and props.
Figure 2.1 illustrates rugby league players playing positions. The rugby league phase
of play allowed no more than six tackles (prior to scoring a try) before handling the
ball to the opposition. It is played over eighty minutes (forty-minute halves) at an elite
level and involves basic movements such as passing, kicking and tackling. Importantly,
the ball played cannot be passed forward but can either be kicked downfield or carried
forward. Rugby league is played across amateur (Gabbett, 2000), semi-professional
(Gabbett, 2002) and professional (Johnston et al., 2014) competition levels.

Rugby league as described by (Geeson-Brown et al., 2020; Till et al., 2017), is a
collision team sport in which matches heavily involve a complex interaction of play-
ers’ technical, tactical, cognitive and particularly physical qualities. Physically, a typ-
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ical rugby league football match requires players to complete frequent bouts of high-
intensity activities (Gabbett et al., 2010; Glassbrook et al., 2019) (e.g., jumping, side-
stepping and sprinting) separately by lower intensity activities (Whitehead et al., 2018)
such as standing, repositioning and walking. Based on competition levels (Gabbett
et al., 2012) and playing positions (Austin and Kelly, 2013), players often cover a total
distance of 4000m up to 8000m, where up to 1000m high-speed distance is reported
by (Waldron et al., 2011) to be often covered. In the presence of enormous high-speed
running demands (Johnston et al., 2014), collision and wrestling bouts (Geeson-Brown
et al., 2020; Till et al., 2017), rugby league players are reported to always be in need of
highly developed and conditioned muscular strength, speed and power to consistently
repeat these actions across an 80-minutes match. As such, the published research con-
ducted in the rugby league as reviewed by studies (Gabbett, 2005; Johnston et al.,
2014) is focused on investigating the physical, technical and tactical demands (among
others) of competitive matches to understand the physiological, injury epidemiology,
strength and conditioning, psychological and performance challenges faced by rugby
league players. To this end, data are collected to conduct research providing solutions
to various challenges faced by rugby league players.

Data in rugby league are often collected by sports scientists in various files and for-
mats and mostly based on different study designs. Majority of the research (Adeyemo
et al., 2022; Dalton-Barron et al., 2021; Gabbett et al., 2011; Glassbrook et al., 2019;
Kupperman and Hertel, 2020; Weaving et al., 2019; Whitehead et al., 2018, 2019,
2021) that quantified the characteristics of rugby league competitive match reported
physical indicators extrapolated from wearable micro-sensors (Guo et al., 2018) (e.g.,
Catapult GPS) and technical-tactical indicators expertly coded by video analysts ex-
tracted from match videos. These indicators as variables are often reported per the
whole (Whitehead et al., 2019), per half (Glassbrook et al., 2019), per peak period
(Weaving et al., 2019) and even averages per minutes (Dalton-Barron et al., 2021).
Physical, technical-tactical and anthropometric indicators as predictor variables are
widely used in literature to prepare athletes for transition between levels (Bradley and
Ade, 2018), identification of skills for talent recruitment and development (Hughes
and Franks, 2008), injury prevention and recovery (Gabbett et al., 2010), opposition
analysis (Colomer et al., 2020) and classification of players into competition levels
within positional group (Whitehead et al., 2021). Largely, the essence of all aspects of
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science in rugby league is the characterisation of players, teams, training and compe-
titions through quantifiers (i.e., anthropometric, physical, technical, tactical) towards
understanding match demands on players and teams, players’ progress or fitness or per-
formance monitoring, and classification of players into groups (e.g., positional group,
playing positions, competition level and injury status).

Player movement profiling and the separation of players into playing positions are
emerging and interesting research areas in rugby league. Player movement profiling
(Sweeting et al., 2014) has become an emerging research area because it offers an alter-
native view to understanding match demands by concurrent evaluation of the speeds,
changes in speeds and turning angles completed by players at any point in time. It pro-
vides movement patterns that explain how external loads are accumulated by providing
exact completed movement activities sequentially performed by players. It can provide
viable solutions to various research aspects of rugby league such as injury epidemiol-
ogy (by uncovering movement patterns that often led to injury incidents), strength and
conditioning (by enhancing training specificity) and performance analysis (through ex-
ternal load evaluation and performance variability assessment) among others. On the
other hand, the separation of players into playing positions (Woods et al., 2018a) is an-
other interesting area because it offers (among other benefits) the identification of the
required physical, technical and or even tactical skills required of a player belonging
to a particular group. This is extremely useful in talent identification (Williams and
Reilly, 2000), as it assists in the early recognition and recruitment of young players to
a particular position. It also offers sports organisations effective financial investment
(Pion et al., 2017) by channelling available resources on the development of the iden-
tified talents having the skills required to perform in a particular playing position. As
match demands on player is based on playing positions, this PhD study is motivated
to explore rugby league players’ movement profiling and positional group separation.
This will ultimately identify sets of movement patterns that characterise competitive
matches, separate rugby league players into playing positions and assess performance
variability.
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2.2 Player Performance Analysis using Classification
Approach

Machine learning is an aspect of computational algorithms comprising methods that
imitate human intelligence through learning from the surrounding environment. It
broadly consists of unsupervised (useful for clustering analysis) and supervised (use-
ful for classification modelling) algorithms. One of the sporting contexts of applying
machine learning algorithms is classification modelling. The goal of applying machine
learning classification algorithm (Collins et al., 2022; Woods et al., 2018a), is to learn
from data to develop a model that can predict outcomes or status or groups or levels.
Sports data are often analysed to explore the difference between sporting aspects but
this differs from applying machine learning classification algorithms. The difference
is mainly due to the development of the predictive model(s) that can classify previous
unseen observations of sporting aspects into pre-defined target variables. One such
prominent sport-related problem, according to Van Eetvelde et al. (2021), is to pre-
dict if a player is injured or not (Ayala et al., 2019) as well as predicting injury types
(Whiteside et al., 2016) using classification algorithms. Other sport-related classifica-
tion problems are to classify players into competition levels (Adeyemo et al., 2022;
Whitehead et al., 2021) and player positions (Woods et al., 2018c).

The application of machine learning classification algorithms in the sporting con-
text of separating or classifying or predicting the players’ playing positions or playing
positions is beginning to garner the interest of sports scientists. Williams and Reilly
(2000) expressed that it assists in the early recognition and recruitment of young tal-
ents within a particular sport with the potential to excel. It also offers sports organ-
isations effective financial investment (Pion et al., 2017) by channelling available re-
sources on the development of the identified talents. Talent identification, according
to Vaeyens et al. (2008), provides methods and is mostly focused on predicting the
success of young players in adult competitions. However, machine learning classifica-
tion algorithms are applied to develop a predictive model towards identifying talents
(Vaeyens et al., 2008) as a means to improve traditional methods (Till et al., 2013) (e.g.,
computer-based match analysis, physical conditioning and cross-sectional approach).
Nowadays, sports organisations are beginning to use talent identification means and
methods to identify players who have unique attributes of a predefined positional group
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or playing positions. As such, machine learning classification algorithms are now ap-
plied to players’ data to classify players into positions and analyse for positional group
unique attributes toward talent identification.

One of the two examples of employing machine learning classification algorithms
to classify players into positions was carried out by Woods et al. (2018c). Elite junior
Australian footballers were classified into four common playing positions (i.e. for-
ward, defence, midfield and ruck) based on technical skill indicators. Technical skill
data of a final two hundred and eleven junior players that competed in national U18
championships, representing teams from each eight state academies that participated
in sixteen championship games were acquired by the study. Classification data was
developed which was made up of six hundred and eighty observations (i.e., three hun-
dred midfield observations; forty-one ruck observations; one hundred and sixty-eight
defence observations; and one hundred and seventy-one forward observations) and
twelve technical skill indicators. The Linear Discriminant analysis (LDA), random
forest and PART decision list machine learning classification algorithms were imple-
mented for the multi-class predictive modelling. Classification accuracy and confusion
matrix were used to evaluate the performance of each multi-class predictive model.
Homogeneity in players across playing positions was revealed as two of the machine
learning classification algorithms (random forest = 52.61% accuracy and LDA = 56.8%
accuracy) fared poorly in the classification of players. Nonetheless, the PART decision
list accuracy produced an accuracy of 70.1%. This indicates that the given set of dis-
crete technical skill indicators can partially separate players into playing positions and
should not be used in isolation. Also, produced the sets of rules produced by the PART
decision list algorithm for classifying players into the common four playing positions
can be used alongside subjective evaluations in practice.

Razali et al. (2017) proposed a talent identification framework for assigning play-
ers to different playing positions in football. The core part of the framework focused
on predicting football players’ positions based on twenty-four technical, mental and
physical skills. The sweeper, wing backs, right/left backs, defensive midfielders, centre

midfielders, wingers, attacking midfielders, wide midfielders, secondary strikers and
forwards positions were considered to cover the varieties of football playing positions.
Data of one hundred players between the age of fifteen to seventeen were collected
from Football Player Information System managed by Bukti Jalil Sports School (BJSS)
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and used for the classification analysis. Three classification algorithms (i.e., Decision
tree, Bayesian networks and nearest neighbour) were utilized to predict the appropri-
ate playing positions of the football players. The leave-one-out validation technique
was used to fit the classification models whose performances were measured using the
accuracy metric. The study was able to establish that the combination of technical,
mental and physical skills as independent variables was able to predict the football
players’ positions at Bayesian network accuracy of 99%, Decision tree accuracy of
98% and Nearest Neighbor accuracy of 97%. However, the (type of) skills that were
significant to the excellent prediction of the predictive models were not identified.

The classification of players into competitive levels is prominent in rugby league
studies as it also helps with talent development and enhancement of training specificity.
In rugby (Woods et al., 2018b), playing pathways are developed offering longitudinal
player development opportunities to identified junior talents. The pathway helps with
the development of junior talents’ multidimensional (i.e., physical, technical, cognitive
and tactical) qualities and it is designed to help them to become elite players. To bring
out success, junior talents participate in competitive matches within specific playing
pathways and there is a need to understand the differences between competition lev-
els. Understanding the differences in competition levels is important (Whitehead et al.,
2021) because young players can participate in a higher competition level while train-
ing at their contracted level. Also, young players are ultimately required to progress to
senior competition (Adeyemo et al., 2022) and can sometimes replace injured senior
players.

Woods et al. (2018b) uncovered the game-play characteristics between two rugby
league competitive levels. By adopting a longitudinal observational study design,
twenty-six rounds of elite youth (i.e. under-20) and senior Australian National Rugby
League (NRL) data were respectively obtained from a publicly available source. The
under-20 competition played one hundred and eighty-six games while the NRL com-
petition had one hundred and eighty-nine games recorded. For under-20 players, three
hundred and seventy-two observations were generated and labelled. For senior NRL
players, three hundred and seventy-eight observations were generated and labelled.
Both competition-level observations were combined to form the input data for classifi-
cation modelling. The observations were described based on twelve technical indica-
tors used as predictor variables. A conditional interference classification tree algorithm
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Figure 2.2: Australian rugby league under-20 and senior NRL competition levels clas-
sification tree (Woods et al., 2018b)

was utilized to develop a model that classified players’ observations into competition
levels. The model was further analysed to reveal the predictor variables (i.e., technical
indicators) that are most capable of explaining both competition levels. Meanwhile,
collinearity between two predictor variables (i.e. all runs and all run metres) was de-
tected and the latter was excluded from the classification modelling. The classification
model was able to correctly classify two hundred and ninety-three under-20 observa-
tions (i.e., 79% accuracy) and three hundred and fifty senior NRL observations (i.e.,
93% accuracy). Five of the final eleven predictor variables were used by the classi-
fication tree model (Figure 2.2), where “all runs”, “tackles” and lowered number of
“tackle breaks” helped in the correct classification of senior NRL observations relative
to under-20.

Whitehead et al. (2021) suggest that Woods et al. (2018b) are limited in their clas-
sification of rugby league players into playing level because only technical indicators
were considered as predictor variables. Hence, the study included both physical and
technical-tactical performance indicators to classify rugby league players into two lev-
els (i.e., academy and senior). GPS data of a total of thirty-one male senior players
and another total of forty-one male academy players of an England rugby league club
that participated in the European Super League across two competitive seasons were
collected. Three hundred and twenty-five senior players and two hundred and fifty-
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Figure 2.3: England rugby league (forwards) academy and senior competition levels
classification tree (Whitehead et al., 2021)

nine academy players’ observations were separated into “forwards” data. Another two
hundred and forty senior players and two hundred and twenty-one academy players’
observations were separated in “backs” data respectively. Random forest classifica-
tion algorithm and conditional interference tree were used for classification modelling
and a train-test split (70:30) technique was utilized for model development and testing.
Random forest was first used to identify key predictor variables (based on its inbuilt
feature importance method), the results of which were used to generate new data sub-
sets for each positional group. Another random forest model was developed on the
newly generated data (for each positional group) to classify players’ match observa-
tion into playing levels. Afterwards, the conditional interference tree was applied to
provide information on how the key predictor variables interact at each competition
level. From “forwards” data, four predictor variables were identified as key variables
and academy players were correctly classified at 62% accuracy while senior players
were correctly classified at 72% accuracy (i.e., 68% overall accuracy).

From “backs” data, nine key performance indicators were identified which pro-
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Figure 2.4: England rugby league (backs) academy and senior competition levels clas-
sification tree (Whitehead et al., 2021)

duced the random forest model that correctly classified 79% of the academy observa-
tion and 86% of the senior observations (i.e., 83% overall classification accuracy). A
conditional interference model was grown on the “forwards” key predictor variables
data which produced an overall accuracy of 64% (similar to random forest’s overall
accuracy). However, three of the four variables were present in the tree (Figure 2.3).
Likewise, another conditional interference model was grown on the “backs” key pre-
dictor variables data which produced an overall accuracy of 78% (slightly lower than
random forest’s overall accuracy. Five out of the nine “backs” key predictor variables
were present in the conditional interference tree (Figure 2.4).

Overall, the application of machine learning classification algorithms to predict
players’ positions is in its infancy but it is greatly useful for uncovering qualities re-
quired of a player belonging to a specific positional group. Such qualities, if and when
identified, can further help in talent identification and recruitment as well as enhance
training programmes for each group. Studies had implemented various classification
algorithms to predict players’ positions in different team sports with excellent accu-
racy, however, the identification of significant variables for predicting players’ posi-
tions is currently unexplored. In rugby league literature, playing-level classification
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is well-researched but the classification of players into playing positions is yet to be
explored despite its immense benefits. Physical, technical and tactical performance in-
dicators, as well as problem-specific variables (e.g., injury incidence), are derived and
used as predictor variables for classification analyses. Therefore, the classification of
rugby league players into positions requires exploration based on its immense useful-
ness in practice. More so, the review of related studies revealed the various types of
classification algorithms with different learning methods for developing classification
and or prediction models. Various strategies (such as repeated leave-one-out, train-test
split and cross-validation) are employed to develop classification models. Accuracy
(overall), AUC, confusion matrix and other measures are used to evaluate the per-
formance(s) of classification models. Also, some (tree-based and or Random Forest)
classification algorithms are preferred because of their inbuilt method to visualise key
predictor variables.

2.2.1 Identifying Key Variables in Classification Analyses

In sports science, it is common for research designs that aim to address a classifi-
cation problem to include multiple predictor variables. In sports literature, the pre-
dictor variables are often derived from demographic, psychological, neuromuscular
measurements, training load variables, player perceived performance, genetic markers,
anthropometric measurement, physical fitness, workload features from GPS, training
intensity, technical skills, physical skills and mental skills data. Therefore, it becomes
important to evaluate the construct validity and reliability of each predictor variable
included before analysis. Often, researchers and practitioners are still left with high
dimensional and colinear variables following this process.

To overcome the multidimensional and multicollinearity of predictor variables (i.e.,
identify key or significant predictor variables), studies typically conduct multiple uni-
variate analyses by investigating each predictor and target variable values separately.
For example, Gabbett (2013) investigated the difference in external loads among rugby
leagues players across two different competitive levels (i.e., the National Youth Com-
petition and National Rugby League) using a repeated-measures analysis of variance
on physical performance indicators. However, such an approach is limited as it does
not consider the covariance of the data and the multiple models produced could in-
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crease classification models’ error rates.
Alternatively, machine learning feature importance methods can be used to identify

key predictor variables (Thornton et al., 2017) by selecting only the variables which
are relatively important to the target variable values. This approach has been imple-
mented when establishing the important training load indicators to predict injury status
(Thornton et al., 2017) and in establishing the importance of seven sleep components
to the Pittsburgh Sleep Quality Index score (Halson et al., 2022). However, using ma-
chine learning variable importance methods is reported to be suboptimal in identifying
key predictors to the target variable values (Williamson et al., 2021) and it affects clas-
sification accuracy.

For example, Whitehead et al. (2021) identified key predictor variables by using a
single random forest model to establish variable importance of technical-tactical and
physical performance indicators to classify rugby league players into two competitive
levels (i.e., senior and academy) based on their playing positions (i.e., backs and for-
wards) using another Random Forest classification model. Whitehead et al. (2021)
reported 83% accuracy for backs and 68% for forwards. Predictor variables that are
not model-agnostic can be identified and the accuracy of classification models can be
improved using the feature selection technique. A more reliable and robust method
to Whitehead et al. (2021) method is aggregating repeated random forest variable im-
portance results (Calhoun et al., 2021) which will involve using a different number of
variables per attempt. However, this method is computationally expensive, may still
produce a suboptimal classification model and the identified key predictor variables are
still model-based. Alternatively, key predictor variables can be identified by applying
a feature selection method (Mabayoje et al., 2016) that possesses no bias to a specific
classification algorithm.

All feature selection methods exist as (Balogun et al., 2020; Chen et al., 2020a)
Filter feature ranking, Filter feature subset selection, Wrapper-based and Embedded
methods. Filter feature ranking methods generate a ranked score for every variable
based on statistical properties found in the data as computed by the method. The
filter feature ranking method requires a user to set a threshold or the desired number
of variables before identifying key predictor variables. This is a limitation when the
importance or weight of variables is unknown or when the total number of important
variables is unknown. Filter feature subset-selection implements heuristic and search
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methods to evaluate multiple subsets of variables to produce the best subset of key
predictor variables as related to target variable values (Balogun et al., 2020; Chen et al.,
2020a). Filter feature subset-selection methods resolved the limitations of the filter
feature ranking methods. Importantly, the sets of variables produced by filter feature
ranking and filter feature subset-selection methods do not have a bias towards any
classification method.

On the other hand, wrapper-based methods (Balogun et al., 2020; Chen et al.,
2020a) are based on a computational greedy search method of the variable space for
finding variables that improve the predictive performance of a particular classification
algorithm. Similarly, embedded methods (Balogun et al., 2020; Chen et al., 2020a) are
intrinsic to machine learning algorithms that find the best features for split decisions
while fitting a predictive model. Both wrapper-based and embedded feature selection
methods are for improving the performance of a specific machine learning algorithm,
as partially implemented by Whitehead et al. (Whitehead et al., 2021) to optimize the
Random Forest model for rugby league players’ competition-level prediction.

Adeyemo et al. (2022) utilized a filter feature subset-selection method to improve
the accuracies reported in Whitehead et al. (2021) study of classifying rugby league
players to competition levels within positional groups. The Correlation-based feature
subset technique was considered because it outputs the best subset of key predictor
variables without bias to any classification algorithm. Adeyemo et al. (2022) reported
an improved 84.55% accuracy for backs and 77.42% accuracy for forwards in contrast
with Whitehead et al. (2021) reported 83% accuracy for backs and 68% for forwards.
Adeyemo et al. (2022) thus established that the filter feature subset-selection method
(as a feature selection technique) will identify key predictor variables that are not based
on the classification model, without the user specifying the number of key predictor
variables to identify as well as capable of improving classification models’ accuracy.

2.3 Frequent Pattern Mining in Sports

Pattern mining (Nijssen, 2013) is a type of data mining setting aimed at finding fre-
quently recurring structures in data. Through pattern mining, interesting, usable and
unexpected substructures (Fournier-Viger et al., 2017) are discovered within the data.
Across the years, pattern mining as a setting of data mining has been extended to sat-
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isfy other types of requirements and thus led to the development of various categories
of pattern mining algorithms that are applicable in different use cases.

In non-sporting contexts, a graph-based pattern mining algorithm was successfully
applied to mine cloned codes in a software system data (Qu et al., 2014) where it out-
performed a traditional token-based method in terms of reduction in computational
complexity and quick execution runtime. Rashid et al. (2012) applied a sequential
pattern mining algorithm to efficiently analyse genome sequence data where interest-
ing contiguous patterns were discovered. Further, a pattern mining algorithm (Pascu,
2018) was utilized to profile the debt default behaviour of bank customers to prevent
future risk, where discovered patterns assisted in preventing future risks. In sports,
technological advancements have assisted in data collection and management (Goes
et al., 2021) and enabled the efficient and consistent collection and storage of sport-
related big data. The collected data made historical and large volumes of data available
for different advanced analyses in sports. One such advanced analysis is the applica-
tion of pattern mining algorithms to analyse sport-related (non-)sequential external
load for various purposes. Examples of the relevant applications of frequent pattern
mining application in sports are discussed in the subsections 2.3.1 and 2.3.2 below.

2.3.1 Athlete Monitoring

Sports trainers are tasked with analyzing athletes’ performance during training, which
is a complex process. This is because athletes complete different forms of training
(e.g., field vs. resistance training) across varying schedules and complete different
amounts of training at different intensities. This can lead to varied stresses placed on
athletes, influencing the extent that they either adapt and improve or heighten their risk
of fatigue and injury. Managing the training process by collecting wearable data is
an important method to inform decision-making. Although, based on a large amount
of data obtainable through wearable devices, trainers are challenged with manually
analyzing the data to monitor athletes’ progression or form and thus turned towards
applying advanced data analytics techniques.

Hrovat et al. (2015) applied a pattern mining algorithm to analyse an athlete’s per-
formance during sports training as a form of player progress monitoring. The analysis
focused on providing a means to either identify the current form of a cyclist or serve as
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Figure 2.5: An example of significantly increasing duration pattern (Hrovat et al.,
2015)

the cyclist’s progress monitor through the discovery of interesting heart-rate sequential
patterns from discretized time series data. Training data (gathered in TCX file format)
was collected from a tracker device (i.e., Garmin Forerunner watch) worm by a cyclist
each day. The tracking data was transformed into sequential data by splitting each daily
data into some time intervals (e.g., 5 and 10 minutes), after which cycling speed, alti-
tude and heart-rate features were identified and discretized into three levels (i.e., low,
medium and high levels) based on equal thresholds. The Sequential PAttern Discovery
using Equivalence classes (SPADE) pattern mining algorithm (Zaki, 2001) was used to
identify and extract frequent sequential patterns. Afterwards, the interestingness (e.g.,
“more significantly increasing duration trends” and “more significantly decreasing du-
ration trends”) of extracted frequent sequential patterns was calculated and visualized.
Sequential patterns of daily heart rates that were difficult to achieve in practice, as well
as those that were difficult to keep at the same level over time periods, were extracted
by the SPADE algorithm. These patterns are characterized by a high level of maximal
speed, a medium level of average heart rate and a maximal heart rate. An example of
the identified top three “more significantly increasing duration trends” pattern over a
fifteen minutes (i.e. 3 x 5-minute) time epoch cyclist ride is depicted in Figure 2.5),
indicating low-level minimum heart rate for five minutes followed by medium-level
average heart rate, and two medium-level maximum and minimum heart rates. Al-
though, data from only one cyclist was analysed and the results cannot be generalised
to all (professional) cyclists, Hrovat et al. (2015) established the use of a sequential
pattern mining algorithm to find patterns that can assess the performance of an athlete
and equally monitor an athlete’s form. This demonstrates that movement patterns of
rugby league players can be identified to assess their performance variability as it will
be a useful solution for player monitoring.
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2.3.2 Players Movement Profiling

Players participate in training programmes and competitive matches throughout com-
petition seasons. Hierarchically, training programmes are broken into training weeks,
sessions and modes (Weaving et al., 2022) while being carefully planned by a multidis-
ciplinary team in sports for the concurrent development of players’ multiple (technical,
tactical and physical) qualities to ultimately improve players’ performance during com-
petitive match games. The aim of training programmes (Impellizzeri et al., 2005) is
to individualise and manipulate the intensity, frequency and duration of training hier-
archy to optimise the biomechanical and psycho-physiological responses, which assist
in maximising the training-induced adaptation of players. Small-sided game (SSG)
training (Pizarro et al., 2019), especially its constrained-led approach, is an important
training method for the simultaneous development of players’ physical and technical-
tactical skills in team sports. Small-sided games aim to replicate the characteristics of
competitive matches by enabling considerable unpredictability and decision-making
demands on players during training.

Through its constrained-led approach (Machado et al., 2019), SSG training pro-
vides (Renshaw and Chow, 2019) an ecologically valid learning environment for play-
ers by reproducing situations that happened within competitive matches and offering
a high degree of similarity between practice and competition. However, small-sided
games as well as other training aspects are designed based on physical, technical-
tactical and anthropometric indicators used to characterise competitive matches. These
indicators (as predictor variables) are currently based on aggregated physical, technical
and tactical demands. More so, there is no understanding of how players accumulated
external load, no knowledge of players’ frequently occurring group of locomotive ac-
tivities nor what series of consecutive technical-tactical activities led to a desired tech-
nical or tactical event. Making inferences from visible locomotive activities to provide
this knowledge or explain the accumulation of external load and or estimate short,
high-intensity movement will be prone to error. As such, exploring the means to accu-
rately provide this information led to the science of player movement profiling.

Player movement profiling is an emerging and interesting research area because it
offers an alternative view to characterize team sport competitive matches. It is aimed at
identifying team sport players’ behavioural movement patterns during matches (Bunker
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et al., 2021) (as certain ordered events have a strong influence on outcomes) to advance
training programmes by providing information that imitates players’ exact activities
during matches. In the context of physical activities, it helps to identify frequent groups
of movement activities (i.e., movement patterns) performed by players and uncover
how often those groups of movements were performed. In the context of technical-
tactical activities, player movement profiling helps to discover groups of events that
led to a specific technical-tactical event. This can be extremely useful for players’
strength and condition, players’ performance monitoring and assessment, injury detec-
tion and or prediction, and players’ positional group profiling for talent identification
and recruitment, among many others.

At the commencement of this project, only two studies (Sweeting et al., 2014,
2017) were published that focused on the movement profiling of team sports play-
ers. Sweeting et al. (2014) embarked on the quantification of the physical movement
(i.e., player movement profiling) of six female junior-elite netball athletes during the
first quarter of match-play (i.e., 15 minutes duration) to understand performance and
provide information for “next fixture” conditioning and any other specific prepara-
tion. The study was the first attempt to develop a movement sequencing technique
that provides temporal sequences of movement characteristics and discrete movement
sequences in sports. The study later applied a Longest Common Subsequence (LCS)
sequential pattern mining algorithm to identify movement patterns from eighteen clus-
tered discrete movement sequences over a 0.5-second epoch in comparison to three
clusters of discrete movement sequences over a 1.5 seconds epoch. The longest com-
mon patterns extracted from the three clusters identified over the 1.5 seconds epoch
are characterized by movement patterns involving sprinting, acceleration and deceler-
ation in a straight direction. In later years, Sweeting et al. (2017) further developed the
framework for player movement profiling. The study focused on the discovery of fre-
quently occurring discrete movement sequences among twelve elite international-level
female netball players, across all seven netball playing positions, that participated in
four competitive national-level matches as a means to address the limitations of study
(Sweeting et al., 2014). Data was collected via RF tracking devices and the longest
common movement patterns were discovered using the existing player movement pro-
filing framework. Frequently recurring movement sequences performed by players of
each playing position were uncovered by conducting a frequency distribution. The fre-
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quency distribution helped identified the movement signature of each netball playing
position. Also, the study quantified the similarities among the movement signatures of
each netball playing position by implementing Minkowski distance. A total of ten (10)
frequently recurring movement sequences were identified across all netball playing
positions and matches while three playing positions showed closely related movement
signatures.

White et al. (2021) argued that the existing framework for player movement pro-
filing (Sweeting et al., 2017) (Figure 3.2) is not stable while producing frequently
recurring movement patterns because it produces different movement patterns for the
same set of movement strings in consecutive runs. Thus, White et al. (2021) addressed
this vital limitation by developing the Sequential Movement Pattern mining (SMP)
framework and ran stability tests of both methods on the same set of rugby league
elite players’ movement strings. Both frameworks for player movement profiling pre-
sented by studies (Sweeting et al., 2017) and (White et al., 2021) were twice used to
analyse identical datasets of thirteen individual rugby league players. The SMP frame-
work produced stable movement patterns of the two frameworks for profiling players’
movement patterns. Despite the robustness and stability of the SMP framework for
discovering movement sequences, the total number of obtainable extracted patterns is
limited to the number of clusters. Another limitation of both frameworks is that only
the longest common pattern per cluster is outputted while other interesting patterns are
discarded.

The main algorithm for finding the frequent sequential movement patterns in both
frameworks (Sweeting et al., 2017; White et al., 2021) for player movement profil-
ing was the “Longest Common Subsequence (LCS)” algorithm. LCS (Kuo and Cross,
1989) is a variant of sequential pattern mining algorithms that accepts two sequences
at a time and outputs only the longest common subsequence of the pair. The outputted
subsequence retained the order of item occurrence but does not account for item con-
secutiveness (i.e., missing movement activities within the movement pattern). Addi-
tionally, the LCS algorithm has no parameter that allows a user to specify a threshold
of the least frequency movement patterns (to be identified) must satisfy. Ideally, the
consecutiveness of movements or events in sports is important and there should be no
omission of activities within profiled movement patterns because of replicating exact
match characteristics as well as repeatability during strength and conditioning training
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programmes. Therefore, the LCS algorithm is not too suitable for player movement
profiling.

Overall, the extraction, interpretation and visualization of frequent sequential pat-
terns were the core objectives of studies that applied pattern mining algorithms in a
sporting context. Several existing pattern mining algorithms were useful and have been
implemented to extract different types of frequent sequential patterns from ranges of
sport-related data for various purposes. Pattern mining algorithms played a pivotal
role in extracting patterns that detected tactics in football, identifying groups of pat-
terns used by a cyclist to monitor player progress, used to discriminate between rugby
union scoring and conceding outcomes as well as used for the extraction of movement
patterns for player movement profiling. Especially for player movement profiling, the
application of the LCS sequential pattern mining algorithm in this area leaves room for
the development and application of a better pattern mining algorithm.

2.4 Sequential Pattern Mining Algorithms

In the search for a suitable sequential pattern mining algorithm to extract players’
movement patterns, various sequential pattern mining algorithms were studied. There
are two main categories of pattern mining algorithm, which is dependent on the nature
of discovered patterns. The first category deals with mining non-sequential patterns
from a large set of sequences to discover patterns. The algorithms under this category
Agrawal et al. (1994) produce patterns that are without sequential order of items but
maintain a lexicographical order of items. The second category deals with mining
patterns where the order of items or events occurrences are considered when analysing
a large set of sequences for frequently recurring patterns. This category of pattern
mining involves the development of sequential pattern mining algorithms which was
also pioneered by Agrawal and Srikant (1995). This PhD study focused on mining
sequential patterns because it applies to identifying player movement patterns.

Before exploring the existing sequential pattern mining algorithms, basic defini-
tions and concepts in sequential pattern mining are discussed below. Considering se-
quences of players’ movements, sequences represent the ordered list of movement
activity strings associated with a player. Each movement activity string consists of a
set of movement units (i.e., encoded locomotive activities) performed by a player (per
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fixture). Each sequence is uniquely identified by a sequence identifier (sequence-id
or SID), The size of the set of sequences (|SDB|) corresponds to the total number of
sequences (i.e., the number of players (per fixture)) in the set.

Table 2.1: Example of a set of Discrete Movement Sequences (Adeyemo, 2023)

Sequence ID Sequence
1 aabbcdefcccdcgc
2 aabbcdecfghcedh
3 aabbcdefcdcdcf
4 aabbcdefceghceij
5 aabbcdefcdgc
6 aabbcdefcfdec

Table 2.1 is an example of a set of movement sequences with six sequences (i.e.,
(|SDB|) = 6): the first sequence contains fifteen movement units, the second con-
tains fifteen movement units, the third sequence contains fourteen movement units, the
fourth sequence contains sixteen movement units, the fifth sequence contains twelve
movement units, and the sixth sequence contains thirteen movement units.

Formally, an item is a basic unit or the lowest granularity in data mining. An
itemset is a set of characters or integers that forms up the sequences in a set of
movement sequences. Let I = {i1, i2, i3, ..., ik} be a set of distinct items. A sequence

S = (j1, j2, j3, ..., jm) is any series of ordered items in a set of movement sequences
(SDB), where j1 ∈ I is an item for 1 ≤ i ≤ m. Concisely, a sequence can be written
as j1j2j3...jm. It is important to mention that an item j1 can appear more than once
in a sequence S. The size of the sequence S, denoted as |S|, is the number of distinct
items in the sequence and the length of the same, denoted as l(S), is the total number
of items contained in the sequence regardless of the repeated item(s). In other words,
the length of a sequence l(S) is the count of all ordered itemset of any given sequence.
Based on sequence s above, the length of the sequence i.e. l(S) = m. A set of move-
ment sequences (SDB) is a list of sequences i.e. SDB = {S1, S2, . . . , Sn} where
each sequence has a unique identifier (i.e. ID).

Definition 2.4.1. Considering two sequences, S1 = (x1x2x3 ... xm) and S2 = (y1y2y3

... yn), S1 is contained or is a sub-sequence of S2 (denoted as S1 ⊑ S2 or S1 ⊏ S2 if
S1 ̸= S2), if and only if there exist integers 1 ≤ k1 < k2 < k3 < ...km ≤ n and such
that x1 = yk1, x2 = yk2, x3 = yk3, ..., xm = ykm. S1 can be referred to as a snippet
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or sub-sequence of S2 while S2 can be referred to as a super-sequence of S1 or said to
contain S1.

Definition 2.4.2. A sub-sequence s∗ is said to be contiguously contained in another
(sub) sequence S, if and only if all the ordered items of s∗ are exactly contained as the
starting itemset of S, whose l(S) must be higher between the two sequences.

Definition 2.4.3. Given a set of movement sequences G and a sub-sequence s∗, the
absolute support of the sub-sequence s∗ in a set of movement sequences G is the total
count of sequences in a set of movement sequences G that contains s∗. This is denoted
as SupaG(s

∗) = |{S|S ∈ G ∧ s∗ ⊑ G}. Meanwhile, the percentage share of sequences
in G that contains s∗ is referred to as its relative support. This is also denoted as
SuprG(s

∗) =({|S|S ∈ G ∧ s∗ ⊑ G} / |G|) * 100.

Definition 2.4.4. Given a set of movement sequences G and a sub-sequence s∗, the
sub-sequence s∗ is frequent if and only if its support value equals or is greater than the
specified threshold = “σ”.

Definition 2.4.5. A contiguous sequential pattern s in a set of movement sequences G
is referred to as a closed contiguous pattern if there exist no other contiguous sequential
patterns s′ such that s′ are super-sequences of s and that the SupaG(s) == SupaG(s

′).

Sequential pattern mining as a category of pattern mining is extremely important
for analysing data collected and stored in sequential order. The importance of sequen-
tial pattern mining is premised on its many real-life applications because many data be-
longing to various disciplines are often encoded as sequences of alphanumeric such as
in genome sequence analysis (Rashid et al., 2012), bioinformatics (Karim et al., 2012),
sequence prediction and classification (Fradkin and Mörchen, 2015), software code
bugs discovery (Qu et al., 2014), bank customer risk profiling (Pascu, 2018), Web-
page click-stream analysis (Li, 2009), Web-logs access patterns (Jin and Lin, 2022)
and large vehicle trajectory analysis (Bermingham and Lee, 2020). Also, time-series
(Sim et al., 2009) (such as stock and athlete Global Positioning Systems [GPS]) data
can be discretized, ordered based on timestamps and converted into sequences for the
application of sequential pattern mining algorithms. The goal of all sequential pat-
tern mining algorithms is to find and extract interesting subsequences from sets of
sequences, where the sequential relationship between items is of special interest to the
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user. The interestingness of patterns is often determined (Fournier-Viger et al., 2017)
by frequency, length and or profit criteria.

Given the same interestingness parameter condition(s) and a set of sequences, se-
quential pattern mining algorithms will produce the same patterns as a result. There-
fore, the difference(s) of sequential pattern mining algorithms does not lie in the out-
putted patterns but in the way each algorithm discovered the required sequential pat-
terns. Sequential pattern mining algorithms differs from one another (Fournier-Viger
et al., 2017; Mabroukeh and Ezeife, 2010) based on (1) how they represent the set of
sequences for internal or external use, (2) how the search space of sequential patterns
are explored to generate and store candidate patterns, (3) how each candidate pattern
support is counted and tested to satisfy the frequency constraint, and (4) whether a
breadth-first or depth-first search method was utilized.

There are two major categorisations and another three taxonomies of sequential
pattern mining algorithms. The categorisation of sequential pattern mining algorithms
according to (Fournier-Viger et al., 2017) depends on whether an algorithm is an
(i) Depth-First search or (ii) Breadth-First search algorithm. The taxonomy of se-
quential pattern mining algorithms according to (Mabroukeh and Ezeife, 2010) was
separated into three based on the technique for pruning the search space and candi-
date patterns generation, namely (i) Apriori-Based (AB) or Candidate Generation (ii)
Pattern-Growth (PG) and (iii) Early-pruning. The early-pruning-based algorithms are
offset of pattern-growth sequential pattern mining algorithms (Mabroukeh and Ezeife,
2010) and these algorithms often utilized the depth-first search method (Fournier-Viger
et al., 2017). Meanwhile, most Apriori-based algorithms utilise a breadth-first search
method. Hence, this thesis explored the taxonomy of sequential pattern mining algo-
rithms as apriori-based and pattern-growth and a new snippet-growth category. All
three categories are discussed in subsections 2.4.1, 2.4.2 and 2.4.4 (with popular ex-
amples) to uncover and understand the algorithmic characteristics of sequential pattern
mining algorithms towards identification of player movement patterns.

2.4.1 Apriori-based Algorithms

The Apriori-based algorithms are based on the principles of Apriori for pruning a set
of sequences search space. The Apriori property is stated as “All nonempty subse-
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quences of a frequent itemset must also be frequent”. This Apriori property can be
formally defined as, for any sequences ja and jb, if ja is a subsequence of jb (ja ⊏ jb),
then the support of jb must be equal or lower to the support of ja. For example, given
two sequences {x} and {x,y}, the occurrence frequency of {x,y} will definitely be
lower or at most equal to the occurrence frequency of {x} because {x,y} is more spe-
cific than {x}. The occurrence frequency is thus said to be monotonic. This property
can also be described as anti−monotonicity or downward−closed because if a sub-
sequence does not pass the minimum support test then all its super sequences will fail
the test. Apriori-based algorithms utilize the downward-closure property to drastically
reduce the search space of sequential patterns when it executes its Apriori-generate
join procedure for candidate pattern generation.

All Apriori-based sequential pattern mining algorithms share three key character-
istics, namely: generate and test, apriori-based pruning and multiple scans of the set
of sequences. The Apriori-All Agrawal and Srikant (1995) and Generalized Sequen-
tial Patterns (GSP) algorithm (Srikant and Agrawal, 1996) algorithms both utilized
the breadth-first search method to generate frequent sequential patterns starting with
large 1-sequences. The candidate generation process of both algorithms is one of their
limitations as both algorithms complete a lot of computationally expensive joins to
generate large patterns. Besides, both algorithms are known to generate patterns that
do not exist (Fournier-Viger et al., 2017) in the given set of sequences. This is possible
because both algorithms generate longer candidate patterns by joining two smaller can-
didate patterns without checking the given set of sequences for its existence (e.g., the
generation of large 3-sequences by joining two or more large 2-sequences). Apriori-
All and GSP algorithms both waste a considerable amount of time by considering
non-existing patterns in the given set of sequences. This will not be good behaviour
for an algorithm for profiling player movement patterns in practice.

Most earlier Apriori-based algorithms are characterized by maintaining candidates
in memory and performing multiple scans (Fournier-Viger et al., 2017) on the given set
of sequences. Although the GSP algorithm improves its performance over Apriori-All
by holding only frequent sequential patterns and the k-candidates in memory (Mabroukeh
and Ezeife, 2010), both algorithm does consume a huge great amount of memory for
maintaining candidate patterns. Similarly, both Apriori-All and GSP algorithms per-
formed repeated scans of the set of sequences to compute the support value of candi-
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date patterns to ascertain patterns frequency (Fournier-Viger et al., 2017). Meanwhile,
it is easier for Apriori-All to count candidate patterns supports than GSP because of the
maximal gap, minimal gap and taxonomy parameters introduced by GSP to formulated
sequences (Zhao and Bhowmick, 2003). As the frequency of movement patterns is one
of the reasons for identifying player movement patterns, the easiness to ascertain the
frequency of movement patterns is an important feature of suitable sequential pattern
mining which GSP lacks.

The characteristics (i.e. strength and weakness) of both algorithms led to the de-
velopment of other efficient apriori-based sequential pattern mining algorithms such
as Sequential PAttern Discovery using Equivalence classes (SPADE) (Zaki, 2001), Se-
quential PAttern Mining (SPAM) algorithm (Ayres et al., 2002) and Co-occurrence
MAP based SPADE and SPAM algorithm (Fournier-Viger et al., 2014a). SPADE
(Zaki, 2001) is characterized by its use of a vertical id-list format to represent a given
set of sequences, unlike Apriori-All and GSP algorithms that used a set of sequences
in its original form (i.e. horizontal). The vertical id-list is insensitive to data skew-
ness and assists in calculating candidate pattern frequency without re-accessing the set
of sequences (Mooney and Roddick, 2013). SPADE treats the original search space
for candidate generation and pruning as a lattice and breaks it down into small pieces
(sub-lattices) during its operation. It only requires three scans of a set of sequences to
efficiently discover all frequent sequential patterns using both depth-first and breadth-
first search for enumerating candidate patterns and both temporal and equality joins
for generating large candidate patterns. SPADE performed better than the GSP algo-
rithm by a factor of two while it is better by an order of magnitude if the support of
2-sequences is precomputed. However, it is limited by its use of vertical representation
of a set of sequences for counting support (i.e., large-sized ID-list that cost time and
space), generation of false candidate patterns as well as its large-numbered joins for
generating patterns.

The SPAM algorithm (Ayres et al., 2002) is characterized by its use of a vertical
bitmap representation of a given set of sequences, which enabled efficient counting of
candidate patterns’ support, to address the limitations of the SPADE algorithm. It also
implemented a lexicographic tree or lattice for storing sequences items, this enables
SPAM to specify the order in which each item can appear (e.g, a⇒ b⇒ c, ...,⇒ z).
SPAM also implemented a novel depth-first strategy with effective pruning methods to
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transverse the candidate pattern search space (Ayres et al., 2002; Mooney and Roddick,
2013). Although SPAM generates and tests candidate patterns, it was efficiently carried
out via bitmaps ANDs (Mooney and Roddick, 2013). SPAM reportedly outperformed
SPADE (Ayres et al., 2002) by about a factor of 2.5 on a small set of sequences while
it outperformed both SPADE and Prefixspan (which is discussed in Section 2.4.2) by
at least an order of magnitude on a large set of sequences. SPAM shares some similari-
ties and limitations with SPADE, although they differ in their methods for representing
data and generating candidate patterns. The limitations include false candidate pat-
tern generation and large-sized ID-list among others. SPAM and SPADE algorithms’
performance varied between space and time trade-off, as SPAM is faster but SPADE
is space efficient (Mabroukeh and Ezeife, 2010). Both algorithms offer alternative
methods for finding frequent sequential patterns and avoided the multiple scans of a
set of sequences limitation of GSP and Apriori-All algorithms. Besides, Fournier-
Viger et al. (2014a) proposed a candidate pruning mechanism to solve the generate
and test property of algorithms by representing a set of sequences in vertical form. By
introducing a new data structure called Co-occurrence MAP, a compact structure for
storing item co-occurrence information from one single scan of the data, both SPADE
and SPAM algorithms were further enhanced. Co-occurrence MAP is an optimisation
method targeted to the candidate generation process. The optimised CM-SPADE and
CM-SPAM algorithms greatly reduced generated candidate patterns in comparison to
their basic forms and were up to eight times faster than SPADE and SPAM algorithms
respectively. The limitation of the Co-occurrence MAP data structure for optimizing
candidate pattern pruning is seen in a large amount of memory used in storing empty
entries of item co-occurrence in a n x n matrix. Also, CM-SPADE and CM-SPAM
algorithms generate false candidate patterns. Both SPADE and SPAM algorithms with
the optimised CM-SPADE and CM-SPAM algorithms can only be suitable for identi-
fying players’ movement patterns if false candidate patterns are not generated, efficient
in identifying frequent patterns, produced patterns without omission of items and based
on a user-specified maximal length.

35



2.4 Sequential Pattern Mining Algorithms

2.4.2 Pattern Growth Algorithms

Pattern growth algorithms were developed as a solution to the generate-and-test prob-
lem that plagued the apriori-based algorithms. The candidate generation step of the
Apriori-based algorithm produces false candidate patterns that are not present in the set
of sequences which also increases the computational cost (i.e., storing false patterns in
memory and checking their support before exclusion). Pattern growth sequential pat-
tern mining algorithm solution is based on recursive scans of a set of sequences to find
larger patterns and as such consider only patterns that appear in the set of sequences.
However, the original search space for finding (large) candidate patterns is partitioned
into smaller sizes (i.e., projected set of sequences) to reduce computational cost while
being transverse through the depth-first search method.

Examples of pattern growth algorithms are (1) Frequent pattern-project Sequential
Pattern mining (FreeSpan) (Han et al., 2000) and (2) Prefix-project Sequential pattern
mining (PrefixSpan) (Han et al., 2001) - the most influential pattern growth algorithm.
FreeSpan (Han et al., 2000) is based on the property that claims if an itemset X is infre-

quent, any sequence whose projected itemset is a superset of X cannot be a sequential

pattern. It considers a set of sequences as a set of tuples containing pairs of sequence
identifiers and sequence, where a sequence comprises of series of elements which can
only contain unique item(s). A sequential pattern is frequent if it is contained in at least
n tuples in the set of sequences, where n is a positive integer defined by a user. The
first scan of Freespan algorithm on the set of sequences is to find all frequent length-
1 sequential patterns and sorts the items in support descending order into a frequent
item list (i.e., f list). Then, it implements a divide-and-conquer method to extract
the complete set of sequential patterns of f list into a frequent item matrix F . The
frequent item matrix F is later used to generate the length-2 sequential patterns. It fur-
ther scans the set of sequences to generate annotations on item-repeating patterns and a
projected set of sequences which enable the further generation of 3 and longer frequent
sequential patterns through alternative-level projection. Concisely, frequent sequential
patterns are mined through original search space partitioning and recursive projection
of sequence subsets of sequences based on the projected itemsets. When tested and
evaluated on a set of sequences, Freespan outperformed GSP and naive FreeSpan al-
gorithms, especially when the set of sequences grows large and the minimum support
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threshold reduces. The algorithm scales linearly as it examines fewer combinations of
subsequences to identify frequent sequential patterns. However, it incurred memory
and computation costs to hold the recursive projected set of sequences during analysis.

PrefixSpan (Han et al., 2001) was developed as a more effective and efficient
pattern-growth sequential pattern mining algorithm. It was inspired by the Frequent
Pattern Growth (FPGrowth) itemset mining algorithm (Han et al., 2004). It has one
parameter that accepts the minimum support threshold besides requiring as input a set
of sequences of sequences. PrefixSpan mainly utilises the set of sequences projection
method to partition a set of sequences into smaller parts and does not generate can-
didate patterns based on joining two patterns, rather it recursively projects the set of
sequences based on prefixes. Similarly to the FreeSpan algorithm, PrefixSpan utilized
a depth-first search method to transverse the search space of sequential patterns. Be-
ginning from length-1 frequent sequential patterns, it explores large patterns through
a recursive appending of items to patterns to create larger ones. A lexicographical (or
any other user-specified) order is put in place to ensure that there are no duplicates
within the generated larger patterns. Prefix examines only the prefix subsequences
and projects only their corresponding postfix subsequences into a projected set of se-
quences. Thus, it grows sequential patterns only within the projected set of sequences
(and not the original search space) by exploring local frequent sequences. The recur-
sive process terminates when the projected set of sequences contains no sequences or
infrequent length-k sequential patterns. PrefixSpan was linearly scalable when evalu-
ated. Its performance was compared against GSP and Freespan algorithms on synthetic
sets of sequences and it was reported to be more efficient and scalable than both algo-
rithms. It was however limited by the cost and creation of a projected set of sequences,
although both bi-level projection and pseudo-projection were implemented to reduce
the cost.

Pattern growth sequential pattern mining algorithms are characterised by predom-
inantly using the depth-first search method and also implementing projection to parti-
tion the original candidate patterns search space into smaller units. This enables the
reduction of time and memory consumption in identifying frequent sequential patterns.
The major benefit of the pattern-growth projected set of sequences is that candidate
generation through joining two lesser length patterns to form longer length patterns and
subsequent testing for candidate patterns supports are no longer required (Mabroukeh
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and Ezeife, 2010). Although the projection set of sequences can be computationally ex-
pensive, there are some existing optimisations such as bi-level and pseudo-projections.

As the number of patterns contained within the search space and the cost of operat-
ing for generating, processing and testing each itemset determine the time complexity
of all sequential pattern mining, pattern growth algorithms have the advantage over
Apriori-based algorithms because they only consider the patterns that are present in
the given set of sequences. However, the application of pattern growth algorithm in
practice revealed some algorithms such as SPAM and CM-Spade outperformed Pre-
fixSpan (Ayres et al., 2002; Fournier-Viger et al., 2014a, 2017). This indicates the cost
of scanning a set of sequences and projections (especially on a large set of sequences)
can lower the performance of pattern-growth algorithms. In practice, pattern-growth
sequential pattern mining algorithms offer more suitable algorithms for identifying
player movement patterns because they do not consider nor generate false candidate
patterns. However, none of the pattern-growth algorithms produced patterns without
omission of items as well as based on a user-specified maximal length which are crite-
ria of suitable movement patterns to profile rugby league players in practice.

2.4.3 Constraints-Based Algorithms

Both apriori-based and pattern growth sequential pattern mining algorithms aimed to
identify frequent sequential patterns from a given set of sequences. These sequential
patterns are often identified based on their frequency (i.e., the satisfaction of mini-
mum support threshold) and generally with the omission of items within the identified
frequent patterns. In practice, the task of sequential pattern mining differs for each
application. Hence, multiple extensions or variations of the problems of sequential
pattern mining are addressed. We refer to these problems as constraints and exam-
ples of constrained-based solutions include closed sequential patterns (Wang and Han,
2004), maximal sequential patterns (Fournier-Viger et al., 2013b, 2014b), top-k se-
quential patterns (Fournier-Viger et al., 2013a), compressed sequential patterns (Lam
et al., 2014), contiguous pattern mining (Farzana Zerin and Jeong, 2011) and closed
contiguous sequential patterns (Bermingham and Lee, 2020; Zhang et al., 2015).

The prominent limitation of traditional sequential pattern mining algorithms is that
large numbers of frequent patterns are identified by algorithms, especially when the
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minimum support threshold is set to a low positive integer value. Likewise, the char-
acteristic (i.e., the total number of sequences and length of sequences) of a set of
sequences also plays an important part in the number of extracted frequent patterns.
The identification of a large number of patterns (based on frequent criteria) became a
problem because users do not have enormous time to analyse a large amount of ex-
tracted frequent patterns. Therefore, extraction of concise representations of frequent

sequential patterns instead of the all sequential pattern became the desired solution.
A concise representation of frequent patterns is a subset of patterns that meaningfully
and adequately summarise the whole set of all frequent patterns. These concise repre-
sentations of frequent patterns are reportedly better and provided higher classification
accuracy in practice (Gao et al., 2008; Pham et al., 2012), in comparison to using all
frequent sequential patterns. Overall, three different forms of concise representation
of frequent patterns exist, namely: maximal, generator and closed sequential patterns.

1. Maximal sequential patterns are set of frequent sequential patterns that have
no sub-sequence(s) and supersequence(s). A sequential pattern sa can be de-
scribed as maximal if there is no other pattern sb, where sb is a superpattern
of sa (i.e., sa ⊑ sb). Several studies (Fournier-Viger et al., 2013b, 2014b; Lu
and Li, 2004) had developed algorithms for extracting maximal sequential pat-
terns, some of the algorithms are based on pattern-growth (Fournier-Viger et al.,
2013b), breadth-first search (Lu and Li, 2004) and even vertical representation
of a set of sequences (Fournier-Viger et al., 2014b). Generally, the limitation of
maximal sequential patterns is that despite being able to reproduce all frequent
sequential patterns, it requires an additional scan(s) of a given set of sequences
to recover the support value of extracted frequent patterns.

2. Generator sequential patterns on the other hand, is a set of frequent sequential
patterns with no subsequence(s) sharing equal support. A sequential pattern sa

can be described as generator if there is no other pattern sb, where sb is a sub-
pattern of sa (i.e., sb ⊑ sa) and both sa and sb shares the same support. Various
algorithms (Gao et al., 2008; Lo et al., 2008; Yi et al., 2011) for extracting gen-
erator sequential patterns were developed, such as Frequent sequence generator
miner (FEAT) (Gao et al., 2008), GenMiner (Lo et al., 2008) and Frequent Se-
quential Generators Patterns (FSGP) (Yi et al., 2011) which are based on pattern
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growth and are reported to provide the smallest representation of subsequences
that concisely represent a set of extracted frequent patterns.

3. Closed sequential patterns are the set of frequent sequential patterns not con-
tained in other frequent patterns with the same support value. A sequential pat-
tern sa can be described as closed if there is no other pattern sb, where sb is a
super-pattern of sa and both sa and sb share the same support (i.e., sa ⊑ sb and
support of sa == support of sb). Various algorithms for extracting closed sequen-
tial patterns were developed (Fournier-Viger et al., 2014a; Gomariz et al., 2013;
Wang et al., 2007; Yan et al., 2003), such as BI-Directional Extension (BIDE)
(Wang et al., 2007) and Closed Sequential pattern mining (CloSpan) (Yan et al.,
2003) which are also based on pattern growth and Closed Sequential Patterns
algorithm (Clasp) (Gomariz et al., 2013) and Co-occurrence MAP-Closed Se-
quential Patterns algorithm (CM-Clasp) (Fournier-Viger et al., 2014a) based on
a vertical representation of a set of sequences. Closed sequential patterns are
quite interesting because all frequent sequential patterns and their correspond-
ing support values are recoverable without accessing the set of sequences and
can be orders of magnitude smaller than all frequent patterns (Zaki and Hsiao,
2002). In other words, closed sequential patterns are lossless compression or
representation of frequent sequential patterns.

Generally, all forms of concise representations of frequent sequential patterns (i.e.,
maximal, generator and closed) are motivated from the other branch of pattern min-
ing - itemsets and association rules mining. These algorithms, such as AprioriClose
(Pasquier et al., 1999), Closed Associate rule Mining (CHARM) (Zaki and Hsiao,
2002), Linear time Closed itemset Miner (LCM) (Uno et al., 2004) and Direct Count
and Intersect Closed algorithm (DCI CLOSED) (Lucchese et al., 2005), discovered
closed itemsets and association rules from a set of transactions. For example, the Apri-
oriClose algorithm (Pasquier et al., 1999) used a Galois connection closure mechanism
to define a closed itemset lattice that identified all closed itemsets using to derive all
association rules within a set of transactions without re-scanning the set of sequences.
However, the patterns extracted by AprioriClose (i.e., association rules) contain items
with omission but without repetitions while the items maintain a non-sequential but
lexicographical order.
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Other types of constraints besides concise representation of frequent patterns exist
as gap, duration, length, top-k, longest common subsequence and negative sequential

patterns constraints among others (Fournier-Viger et al., 2017; Mabroukeh and Ezeife,
2010). The gap constraint is interesting because most sequential pattern mining algo-
rithms omit items within frequent sequential patterns. The gap constraint introduced
specifying the minimum or maximum gap between two items within a frequent pattern.
In some applications, such as genome sequencing (Karim et al., 2012), frequent con-
tiguous patterns (i.e., patterns without omission of items - minimum gap = 0) are the
interesting patterns to be identified. The omission of items among sequential patterns
is not allowed.

The longest common subsequence constraint is originally based on the problem of
finding the length of the longest subsequence common between two input strings. It
evolved into identifying the actual longest common subsequence rather than the length.
Longest Common Subsequence (LCS) algorithm (Benson et al., 2013) is the solution to
this problem and is limited as it only accepts two input strings and outputs the longest
common subsequence and its length. This limitation of accepting only two strings
was resolved by the development of the multiple longest common sequence (MLCS)
algorithm (Islam et al., 2019) that accepts two or more input strings. Nonetheless,
the LCS algorithm and its variants only output the longest common subsequences and
discard other common sequences which may be informative and or useful.

However, different constraint-based algorithms are not without limitations. Mining
contiguous or top-k or longest common patterns from a large set of sequences result
in a number of limitations such as high computational cost, noisy and redundant re-
sults, complex result and discard of long or interesting patterns. Overall, none of the
existing constraints-based algorithms can extract movement patterns that are without
omission of items, based on a user-defined maximal length, satisfy user-defined fre-
quency threshold and provide a lossless compression of frequent patterns as required
of a suitable algorithm for player movement profiling.

2.4.4 Snippet Growth Algorithm

At the commencement of this project, only one sequential pattern mining algorithm
was based on snippet growth. Snippet-growth resolved the generation of false can-
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didate patterns that plagued apriori-based sequential pattern mining algorithms and
expensive recursive scans of a set of sequences to find large patterns from a projected
set of sequences that plagued pattern growth sequential pattern mining algorithms.
Snippet-growth method split original sequences into a set of snippets through the n-
gram model. This method assures the strict adjacency and ordering of items within
sub-sequences (candidate patterns) as well as ensures the patterns are present in the set
of sequences.

CCSpan (Zhang et al., 2015) is the only existing snippet-growth-based sequential
pattern mining algorithm. It is also the state-of-the-art algorithm for finding frequent
closed contiguous sequences from a given set of sequences. The extraction of frequent
closed contiguous patterns from any set of sequences ensures that the produced result
is a compact and compressed set of patterns wherein infrequent patterns are removed
and some other frequent patterns (i.e., mostly frequent subpatterns) are also safely
removed from the result without losing any information from the resulting frequent
patterns. This avails the opportunity to re-generate frequent contiguous patterns with
their support values from the resulting frequent closed contiguous patterns (because the
subpatterns of each frequent closed contiguous pattern have the same support with its
frequent closed contiguous patterns) without re-accessing the set of sequences. This is
referred to as the lossless compression of frequent sequential patterns unlike the lossy
compression performed by the maximal sequential pattern mining algorithms.

CCSpan is faster and consumes less computer memory in its provision of fre-
quent closed contiguous patterns (Bermingham and Lee, 2020; Zhang et al., 2015) than
four other benchmark and widely used algorithms for finding frequent closed (sequen-
tial) patterns namely BIDE (Wang and Han, 2004), CM-Clasp (Fournier-Viger et al.,
2014a), ClaSP (Gomariz et al., 2013), and CloSpan (Yan et al., 2003). The major limi-
tation of the CCSpan algorithm is its inability to scale well on a large set of sequences
and especially those with very long sequences (Abboud et al., 2017; Bermingham and
Lee, 2020). CCSpan algorithm uses a triple data structure to hold candidate patterns
among other values and uses a conditional statement to check for duplicates. This
data structure as well as a method for checking duplicates is another limitation as it in-
creases execution runtime that inhibits optimization. Another limitation of the CCSpan
algorithm is that its pre-post-sub-sequence pruning method for identifying closed con-
tiguous patterns increases runtime and consumes memory by having to generate two
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subpatterns from each candidate pattern and calculate the support values of both sub-
patterns besides comparing the support and checking if they all satisfy the frequency
threshold criterion. CCSpan algorithmic step of candidate generation of one-length
patterns and incrementally increases the step by 1 length until the maximum length
required multiple scans of a set of sequences at every iteration. Although CCSpan
can produce movement patterns with three (i.e., item contiguousness, user-defined fre-
quency, and frequent pattern lossless compression) of four criteria for player movement
patterns profiling, the remaining criterion (i.e., user-specified maximal length) was not
satisfied. Therefore, a new sequential pattern mining algorithm that satisfies all the
criteria of patterns for player movement profiling as well as resolves all limitations of
CCSpan algorithm should be proposed and developed.

Overall, the limitations of sequential pattern mining algorithms (especially the
state-of-the-art algorithm for finding closed contiguous patterns) present an oppor-
tunity to propose, develop and comparatively analyse a novel and better sequential
pattern mining algorithm for finding (user-specified maximal length) closed contigu-
ous sequential patterns. Additionally, the application of existing algorithms offers the
means to validate the (movement) patterns produced by the proposed sequential pattern
mining algorithm of this PhD study.

2.5 Chapter Summary

Rugby league football is a team sport, characterised by frequent bouts of high-intensity
activities separated by lower-intensity activities where players require concurrent de-
velopment of physical, technical and tactical skills in other to cope with match de-
mands. Research aspects in rugby league utilised data containing anthropometric,
physical, technical and or tactical performance indicators (Van Eetvelde et al., 2021;
Whitehead et al., 2019) for various purposes (e.g., player performance monitoring and
classification of players into playing level) towards developing players’ skills. How-
ever, these existing performance indicators provide little or no understanding of how
players accumulate external loads nor uncover a series of events leading to a desired
technical-tactical event as they are often aggregated or reported in volume. Player
movement profiling (Sweeting et al., 2017; White et al., 2021) uncovers match char-
acteristics by identifying frequent groups of players’ behavioural movement patterns
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(i.e., movement and event activities) that sequentially happened during match games
towards understanding the performance and replicating those match activities during
players’ training and development programmes. Existing player movement profiling
methods have some limitations, particularly the algorithm that extracts movement pat-
terns. The LCS algorithm for movement pattern extraction is not too suitable in prac-
tice because extracted movement patterns omit items (i.e. movement activities). It only
identifies a single movement pattern and discards other interesting movement patterns
among other limitations. More so, none of the existing sequential pattern mining al-
gorithms Benson et al. (2013); Zhang et al. (2015) is suitable for player movement
profiling. Hence, a suitable sequential pattern mining algorithm should be proposed
and developed.

Additionally, the classification of rugby league players into playing positions is
unexplored despite its usefulness while other classification problems (e.g., injury pre-
diction and playing level classification) in rugby league (section 2.4.3) are thoroughly
researched. In practice, the classification of players into positions is greatly useful
in talent recruitment and (player) development because it identifies the skills and or
qualities of players belonging to a specific positional group. Therefore, an attempt
to classify rugby league players into playing positions (especially based on profiled
movement patterns) should be made. More so, classification modelling should involve
the use of multiple algorithms for comparative performance evaluation. Feature se-
lection algorithm should be used for identifying significant or key predictor variables.
Particularly, filter feature subset-selection methods among other categories of feature
selection methods can be applied to identify key predictor variables without the need
for a user to set a threshold or specify the number of important predictor variables
to identify. Classification models should be developed and evaluated using a k-fold
cross-validation technique and in the presence of a small number of instances, the
leave-one-out validation technique can be utilised.

Overall, the quantification of rugby league players’ external load through player
movement profiling to identify movement patterns for separating players into playing
positions should be explored. This will help identify signature movement patterns of
players within playing positions which can transform how rugby league: talents can be
identified; players’ physical, technical and tactical skills are developed; and players’
performance variability can be assessed and visualised.
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Chapter 3
Methodology

This PhD study is based on identifying movement patterns of elite rugby football
league players, that can quantify players’ external loads, even with respect to play-
ing positions. Having studied and discussed various methods for player movement
profiling as well as sequential pattern mining algorithms (applications in sports) in the
previous chapter, this chapter discusses the methods used in this PhD study. An exper-
imental framework of this PhD study is presented in Figure 3.1 and discussed in the
sections below.

3.1 Player Movement Profiling Frameworks

Player movement profiling is based on using movement patterns to quantify players’
external load towards discovering the order of match activities occurrences and how
often they happened. Aspects of player movement profiling can be categorised into the
generation of discrete movement sequences from Radio-Frequency (RF) or GPS data
and the extraction of movement patterns. Therefore, the two existing frameworks for
player movement profiling are critically discussed in the subsections below providing
theoretical underpinnings on the proposed algorithm for extracting movement patterns.
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Figure 3.1: Outline of Research Method for this PhD study (Adeyemo, 2023).
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3.1 Player Movement Profiling Frameworks

3.1.1 Sweeting Framework

Following these two studies (Sweeting et al., 2014, 2017), Figure 3.2 depicts the move-
ment sequencing technique developed and used in both studies. It is important to men-
tion that the method was developed and used on RF data.

Players’ RF tracking (positional i.e., X and Y coordinates) data were collected
at the rate of 10Hz, the data was pre-processed by re-sampling into a 100-Hz data file
using a customized software that implemented the Kalman filter method (Sathyan et al.,
2012). Four features or variables were engineered and extracted from the resampled
data (Sweeting et al., 2014, 2017).

Velocity as a variable was engineered from positional data, and its values were
computed for each athlete. Velocity values for each player were computed using the
formula illustrated in Equation 3.1

Vi =

√
∆x2 +∆y2

∆t
(3.1)

Acceleration as another variable was derived from velocity and its values were derived
from the computed velocity values using the formula in Equation 3.2.

Ai =
Vi − Vi−1

∆t
(3.2)

The angular displacement (Θi) was computed from the dot product of consecutive
movement vectors, a and b as illustrated in Equation 3.3.

Θi = cos−1

[
a.b

||a||.||b||

]
(3.3)

From the angular displacement, the angular velocity was computed as described in
Equation 3.4.

ωi =
Θi −Θi−1

∆t
(3.4)

where t corresponded to a user-specified time epoch.
The velocity, acceleration and angular velocity values were clustered into four,

three and four arbitrary clusters respectively using a one-dimensional k-means cluster-
ing algorithm. The declared clusters for each variable were then qualitatively labelled
without regard to specific quantities: Velocity clusters were labelled walk, jog, sprint
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Figure 3.2: Depiction of Sweeting et al. Movement Sequencing Framework
(Adeyemo, 2023). 48



3.1 Player Movement Profiling Frameworks

and run; acceleration clusters were labelled accelerate, decelerate and neutral; and an-
gular velocity clusters were labelled straight, turn 45°, turn 90°, turn 180°. These qual-
itative labels were uniquely combined to derive forty-eight (i.e., 4 x 3 x 4) movement
subunits, each assigned a unique alphanumeric letter ranging from “a-U” as identifica-
tion codes.

Afterwards, each player’s period of match-play was represented by a temporal se-
quence of movement units. Discrete movement sequences were later isolated by de-
lineating the temporal sequence of movement units using a threshold of 0.5 m.s−1 that
represents players’ moments of inactivity. Hierarchical clustering algorithm (Ward Jr,
1963) was implemented to cluster similar discrete movement sequences into twenty-
five clusters. At the same time, Levenshtein distance (Levenshtein et al., 1966) was
used to quantify the similarity of players’ movement sequences for each user-specified
time epoch (i.e., 0.5, 0.75, 1.0, 1.25 and 1.50 seconds) respectively. The Longest
Common Sequence algorithm (Kuo and Cross, 1989) was used to identify the Longest
common movement patterns within each cluster. Frequently recurring movement pat-
terns performed by individual playing positions were identified in two ways. The first
is a compilation of the relative frequency of individual movement subunits per playing
position. The second is the computation of the relative frequency of the LCS-derived
movement patterns per playing position.

3.1.2 Sequential Movement Pattern-mining (SMP) Framework

White et al. (2021) suggested that the Sweeting framework (discussed in Section 3.1.1)
for player movement profiling is not stable because it produces different movement
patterns for the same set of movement strings in consecutive runs. This is possible
due to the application of the K-means clustering algorithm to cluster velocity, acceler-
ation and angular velocity data towards generating discretized locomotive activities as
movement units. The instability might as well be caused by the arbitrarily qualitative
labelling of each cluster. Hence, they developed the SMP framework that differs from
the existing player movement profiling method mainly by its method for formulating
temporal movement sequences and assigning movement sequences into hierarchical
clusters.

The SMP framework defined the thresholds for discretizing GPS data (collected
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at the rate of 10Hz) into stable discrete movement sequences and ensured no cluster
contained a single movement sequence. The SMP framework is a 4-step methodolog-
ical framework (depicted in Figure 3.3) developed to process team sports GPS data to
identify frequent sequential movement patterns ultimately. The first step formulates
movement descriptors by extracting locomotive data (i.e. velocity and acceleration)
and geospatial data (i.e., bearing) from GPS data sourced during training or competi-
tion, computes turning angle values from pairs of consecutive bearings and assigning
the thresholds for discretizing those data into movement units. Table 3.1 contains the
thresholds used in discretizing velocity, acceleration and turning angle values.

The second step formulates the movement units by applying the defined thresholds.
A movement dictionary (i.e., the set of unique combinations of movement descriptors
labelled by an alphanumeric letter) was developed to create a time-series sequence of
continuous movement units (temporal movement sequence) over a period of match-
played. See Table 3.2 for each movement unit and its unique descriptor character.
Discrete movement sequences were isolated from the continuous movement units by
removing players’ movement below 1.20 m.s−1 because they are considered inactive
periods. An example of movement sequence from Figure 3.4 is the sequential concate-
nation of the movement units i.e., “cbffehffffij”.

The third step of the SMP framework identifies frequent movement patterns and
can condense discrete sub-sequences of movement units if required. Hierarchical clus-
ter analysis was implemented in this step to cluster similar discrete subsequences of
movement units, whose similarity was quantified using the Levenshtein distance func-
tion. Cluster reassignment was carried out on clusters with one movement sequence by
reassigning such movement sequences to the nearest cluster as the means to optimise
the hierarchical clustering result through the prevention of single-element clusters. The
longest common subsequences (LCS) algorithm was also implemented to discover the
longest common movement pattern within each cluster.

The fourth and final step of the SMP framework identifies player-specific frequent
SMP signatures, calculates the percentage of a frequent SMP within each player’s
movement pattern profile and used the Minkowski distance function to quantify play-
ers’ signature movement.
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3.1 Player Movement Profiling Frameworks

Figure 3.3: SMP Framework extracted from (White et al., 2021)
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3.2 Closed Contiguous Frequent Pattern Mining for Player Movement Analysis

Table 3.2: Movement Unit and Character (White et al., 2021)

Movement Unit Character
WalkDecelerationStraight a
WalkDecelerationAcute-Change b
WalkDecelerationLarge-Change c
WalkDecelerationBackwards d
WalkNeutralStraight e
WalkNeutralAcute-Change f
WalkNeutralLarge-Change g
WalkNeutralBackwards h
WalkAccelerationStraight i
WalkAccelerationAcute-Change j
WalkAccelerationLarge-Change k
WalkAccelerationBackwards l
JogDecelerationStraight m
JogDecelerationAcute-Change n
JogDecelerationLarge-Change o
JogDecelerationBackwards p
JogNeutralStraight q
JogNeutralAcute-Change r
JogNeutralLarge-Change s
JogNeutralBackwards t
JogAccelerationStraight u
JogAccelerationAcute-Change v
JogAccelerationLarge-Change w
JogAccelerationBackwards x

Movement Unit Character
RunDecelerationStraight y
RunDecelerationAcute-Change z
RunDecelerationLarge-Change A
RunDecelerationBackwards B
RunNeutralStraight C
RunNeutralAcute-Change D
RunNeutralLarge-Change E
RunNeutralBackwards F
RunAccelerationStraight G
RunAccelerationAcute-Change H
RunAccelerationLarge-Change I
RunAccelerationBackwards J
SprintDecelerationStraight K
SprintDecelerationAcute-Change L
SprintDecelerationLarge-Change M
SprintDecelerationBackwards N
SprintNeutralStraight O
SprintNeutralAcute-Change P
SprintNeutralLarge-Change Q
SprintNeutralBackwards R
SprintAccelerationStraight S
SprintAccelerationAcute-Change T
SprintAccelerationLarge-Change U
SprintAccelerationBackwards V

Overall, the LCS algorithm implemented for movement pattern extraction in both
existing player movement profiling methods does not satisfy all four required criteria
of movement patterns for player movement profiling. These existing frameworks have
limitations (Section 2.3.2) including identifying few movement patterns from twenty-
five clusters, producing only the longest common patterns while discarding other in-
teresting patterns which may be useful in practice. Therefore, it becomes important to
find a suitable pattern-mining algorithm for player movement profiling.

3.2 Closed Contiguous Frequent Pattern Mining for Player
Movement Analysis

The LCS algorithm used by the existing player movement profiling frameworks is lim-
ited (discussed aboved, leading to the search for a suitable frequent pattern mining
algorithm. There are various existing pattern mining algorithms but they lack prag-
matic application for player movement profiling as reviewed in Section 2.4, besides
the CCSpan algorithm which meets three of the four criteria of a suitable algorithm.
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3.2 Closed Contiguous Frequent Pattern Mining for Player Movement Analysis

3.2.1 Closed Contiguous Sequential Pattern Mining (CCspan) Al-
gorithm

CCSpan algorithm meets three of four criteria of a suitable algorithm for player move-
ment profiling while having some limitations discussed in Section 2.4.4. CCSpan uses
three compact data structures to execute the extraction of closed contiguous patterns.
The first is a 2-tuple (S.id, S) that represents the input set of sequences (S) and se-
quence identifier (S.id). The second data structure is a triple (f, f.count, B) that rep-
resents a pattern (f ), the pattern count (f.count) and an attribute B whose values are
Y if the pattern is closed contiguous or N if otherwise. In the end, CCSpan outputs a
set F consisting of all closed and non-closed contiguous patterns. CCSpan is known
to generate a list of candidates by using the snippet-growth technique to ensure that
candidate patterns do not include false patterns (i.e., patterns that do not exist in the set
of sequences), saving memory consumption and lower execution runtime.

Algorithm 1 CCSpan Algorithm
Input: Set of sequences D and a minimum support threshold (σ)
Output: Complete set of closed contiguous sequential patterns

F← ∅; // initialise F to store the closed contiguous patterns
Fk ← ∅; // initialize- Fk to store the length-k contiguous patterns
F1← init-gen(D,σ) // generate the frequent 1-sequences

1: for (k = 2; Fk − 1 ̸= ∅; k++) do
2: Pk ← ∅ // initialize Pk to store the checked sequences
3: for each sequence S ∈ D and l(S) ≥ k do
4: for (s ∈ S and l(s) = k) do
5: ConSP-gen(D,s,Fk − 1,Pk, S.id,σ) // generate the contiguous patterns
6: end for
7: end for
8: Fk − 1← CloConSP-gen(Fk − 1,Fk) // generate the closed contiguous patterns
9: F←∪k − 1Fk − 1;

10: end for
11: return F←∪kFk;

CCSpan snippet-growth method splits a set of sequences to generate patterns rather
than enumerating all possible joins of frequent sub-sequences to produce a potentially
longer pattern. CCSpan generates its list of candidates starting from a one-length pat-
tern to the obtainable maximum length of patterns based on the given set of sequences.
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3.2 Closed Contiguous Frequent Pattern Mining for Player Movement Analysis

It prunes its candidates for frequency and pattern closure at each incremental iteration.
This state-of-the-art closed contiguous pattern mining algorithm implemented three
pruning methods to remove non-frequent patterns and check for (non-)closed sequen-
tial sub-sequences. At initialization, CCSpan generates its one-length patterns without
considering the last sequence in the set of sequences (because the support for any
distinct pattern therein will be equal to “1”, which is not frequent) and prunes the one-
length distinct patterns for frequency. This was employed to reduce memory usage
and lower run time. During CCSpan incremental execution (i.e., starting from two-
length patterns), it prunes generated snippets for duplicates by checking if it is already
existing as a pattern within the created triple. Afterwards, it conducts a pre-post-sub-
sequence pruning on the distinct patterns to identify infrequent patterns. Additionally,
CCSpan uses this particular pruning method to check for transitivity property as a cri-
terion for pattern closure. Lastly, it uses support pruning to compute the support of a
snippet that is distinct and frequent based on a pre-post-sub-sequence check.

The application of CCSpan is explored for player movement profiling, providing a
foundation for conceptual research into developing a novel algorithm for player move-
ment profiling. The results of this are presented and discussed in Chapter 4.

3.2.2 Movement Pattern Analysis

This PhD study conducts empirical research to identify and thus validate the best type
of movement patterns useful for player movement profiling. This experiment inves-
tigated if the consecutiveness of match activities matters when quantifying players’
external load. The sporting context of player positions was considered for this ex-
perimental investigation (See Section 2.2) because it is immensely useful for training
customisation, talent identification and recruitment and players’ performance profiling
among others.

There are three obtainable types of movement patterns (i.e., consecutive, non-
consecutive and non-sequential) and all were considered to identify the best type of
movement pattern for player movement profiling. Ultimately, three algorithms that
can extract the three obtainable types of movement patterns from rugby league play-
ers’ GPS data were selected. Importantly, the best set of profiled movement patterns
can be identified through the separation of players into two tactically different playing
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positions, based on known differences, by applying five machine-learning classifica-
tion algorithms for comparative analysis. The selected classification algorithms are
discussed in the subsection below.

3.2.2.1 Classification Algorithms

Given that the classification of players into positional groups (based on movement pat-
terns) is unexplored in rugby league (Section 2.2), various classification algorithms
were succinctly studied to perform such an advanced analytics task. To identify and
thus validate the best type of movement patterns for separating players into two distinct
tactical playing positions as well as the separation of elite rugby players into nine play-
ing positions, classification algorithms were used to induce knowledge from data with
movement patterns as predictor variables and to measure the accuracy of separation
provided by each type of movement patterns.

In this PhD study, five classification algorithms with different learning schemes
were chosen and studied for various classification purposes. The classification algo-
rithms are Decision tree, (Gaussian) Naive Bayes, Logistic Regression, Multilayered
Perceptron, Random Forest, and k-Nearest neighbour. The multiple classification al-
gorithms were selected to enable comparative performance evaluation of classification
models for each classification task.

Decision Tree: Decision Tree algorithm is a non-parametric supervised learning
technique (Pedregosa et al., 2011) used in this PhD study for classification. It learns
simple decision rules inferred from data features as knowledge (in the form of an in-
verted tree) and presents a decision tree as a model. Decision Tree models are charac-
terised (Bhargav et al., 2022) with nodes representing predictor variables or features,
branches or links between nodes representing decisions, and leaves representing out-
puts or target variables values. The algorithm utilises a divide-and-conquer method to
splits down training instances into smaller subsets of homogeneous nodes containing
similar target variables values.

Random Forest: Random Forest is an ensemble of tree models (Pedregosa et al.,
2011) (as depicted in Figure 3.5) that was used in this PhD study for classification. It
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utilises a perturb-and-combine method to fit specified numbers of decision tree classi-
fication models via randomness of predictor variables and predict an instance’s target
variable based on the average prediction of individual classifiers. It learns from data
by fitting low correlation decision trees (Bhargav et al., 2022) where each tree selects
some random number of features and bootstrap sample instances with replacement.
These features of the random forest model ensure better prediction or classification
outcomes (compared to a single decision tree model).

Figure 3.5: Random Forest Illustration RFI (2020)

Naive Bayes: Naı̈ve Bayes is a conditional probability-based classification machine
learning algorithm. It uses the Bayes theorem, which strongly assumes that all pre-
dictor variables are independent of themselves (Adeyemo et al., 2020; Chen et al.,
2020b), to fit predictive models. The Gaussian Naı̈ve Bayes algorithm as implemented
in Sci-kit learn python module (Pedregosa et al., 2011) assumed the likelihood of
predictor variables to be Gaussian. It uses the formula in Equation 3.5 to compute the
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3.2 Closed Contiguous Frequent Pattern Mining for Player Movement Analysis

conditional probability of an instance Xi belonging to a target variable value y.

P (xi|y) =
1√
2πσ2

y

exp(−(xi − µy)
2

2σ2
y

) (3.5)

where parameters µy and σy are estimated using maximum likelihood.

Logistic Regression: Logistic Regression is a statistical analysis technique used for
predictive modelling (Balogun et al., 2019; Wilkens, 2021) such that independent or
predictor variables are used to predict dependent or target variable values. The fitting
of a Logistic Regression model is achieved through maximum likelihood (Pedregosa
et al., 2011) where the optimal vectors and a constant is being determined. In the
Sci-kit learn python module, the Logistic Regression model produces a numerical
predicted probability (Equation 3.6) of the positive class P (yi = 1|Xi) which is di-
vided by a default threshold of 0.5 for a binary case classification.

p(Xi) = expit(Xiw + w0) =
1

1 + exp(−Xiw − w0)
(3.6)

In the case of multinomial classification, the Logistic Regression model comprises a
matrix of coefficients W containing rows of vectors Wk corresponding to a class k and
produces numerical predicted probabilities P (yi = k|Xi) (as shown in Equation 3.7)
where k ∈ K and yi ∈ 1, ..., K is the encoded target variable value for an instance i.

pk(Xi) =
exp(XiWk +W0,k)∑K−1

l=0 +exp(XiWl +W0,l)
(3.7)

Multi-Layered Perceptron: Multi-Layered Perceptron (MLP) classification machine
learning algorithm is based on Artificial Neural Network (ANN) (Mabayoje et al.,
2016) and it represents a black-box learning method (Sharma et al., 2019). It is an-
other supervised machine learning algorithm (Pedregosa et al., 2011) that learns a
function f (·):Sj → Sk on a training data, where j corresponds to the input dimen-
sions and k corresponds to the output dimensions given a set of predictor variables
X = x1, x2, ..., xj and a target variable y. It was implemented as layers of input, (mul-
tiple) hidden and output interconnected neurons (as depicted in Figure 3.6). The input
layers consist of predictor variables as its set of neurons. The hidden layer(s) consist
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Figure 3.6: MLP with one hidden layer (Pedregosa et al., 2011)

of neurons with transformed values (i.e., weighted linear predictor variables) from the
preceding layer followed by a non-linear activation function (e.g., tan function). The
output layer consists of neurons which accept values from the last hidden layer and
transform them into output values that correspond to the target variable values.

3.2.2.2 Pattern Similarity Measurements

Besides using the classification modelling (Section 3.2.2.1) to analyse movement pat-
terns for identifying the best type of movement patterns, the sets of obtainable move-
ment patterns can also be analysed for similarity and overlaps.

Jaccard Analysis: Jaccard similarity measure (Wang et al., 2019) enables exact
matching of patterns between two sets and was used to quantify the similarity among
the groups of extracted patterns. Given two sets of movement patterns (i.e., A and B),
the Jaccard similarity index is computed as in Equation 5.1.

J(A,B) = |A ∩B|/|A ∪B| (3.8)

Overlap Movement Patterns: Overlap movement patterns between two sets of move-
ment patterns were identified using the exact matching method. Overlapping unique
movement patterns between pairs of pattern mining algorithms were identified. For
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each pair, the most frequent-50 and least frequent-50 extracted movement patterns of
each pattern mining algorithm were checked for overlapping and visualised. This was
carried out to identify where the overlapping movement patterns are located. A further
analysis was carried out on the identified overlapped movement patterns to discover
those patterns performed by players of each playing position. Also, the overlapped
movement patterns between playing positions per pattern mining algorithm were ex-
plored.

Overall, considering the:

1. existing stable and robust method (i.e. SMP framework) for player movement
profiling,

2. various types of obtainable movement patterns available for analysing sports big
data, and

3. sequential nature of rugby league match activities,

movement patterns analysis (consisting of classification modelling and pattern similar-
ity measurements) was considered to ascertain the type of movement patterns that best
separate RFL players into playing positions. Therefore, pattern mining algorithms that
extract the three types of obtainable (i.e., sequential but non-consecutive, sequential
and consecutive, and non-sequential) movement patterns from data of two tactically
different playing positions in rugby league were explored, towards validating the best
patterns for player movement profiling. The two rugby league playing positions (i.e.
hookers and wingers) were selected based on their known differences in tactical roles
during matches and Meir et al. (2001) also revealed that hookers and wingers share
nearly similar average body weight but perform distinct tactical roles and different
on-field activities (e.g., 15-m and 40-m sprints). The results of these analyses are pre-
sented and discussed in Chapter 5.

3.3 Player Movement Profiling

This PhD study also conducts applied research using the identified best type of move-
ment patterns to complete three applications useful in practice. The first application
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will identify signature movement patterns per rugby league playing position. The sec-
ond application will investigate the classification of RFL players into all playing posi-
tions using movement patterns as opposed to traditional performance indicators. Also,
appropriate movement pattern values as well as key and significant movement patterns
for such classification analyses will be investigated. The third application will estab-
lish a set of “Movement Performance Indicators”, from extracted movement patterns,
useful to assess and visualise the performance variability of players. Each application
analysis is discussed in the subsections below.

3.3.1 Signature Movement Patterns of RFL Playing Positions

Following the identification of the algorithm that extracts the best type of movement
patterns to quantify players’ external load, the same was used to quantify players’
external load to make discoveries about rugby league players’ positions and movement
patterns. This is important because rugby league is a physically intense team sport
where players are tasked with different responsibilities during competitive matches.
The use of movement patterns, in this regard, will uncover the specific behavioural
movement patterns of players belonging to each rugby league playing position. As
there are nine playing positions in rugby league, discovering the signature movement
patterns of players within each position will provide vast usefulness in practice such as
customised training and talent scouting. The results of this analysis are presented and
discussed in Section 6.2.1.

3.3.2 RFL Playing Position Classification using Movement Patterns

Following the identification of the best type of movement pattern for player movement
profiling (as discussed in Section 3.2), the same was considered for the classification of
elite RFL players into all nine playing positions. Traditionally, physical and technical-
tactical indicators that quantify players’ external load are used to develop classification
models in sports literature despite their limitations. Given that movement patterns also
quantify players’ external but with more granular information, empirical research was
conducted to investigate if movement patterns can be used for the classification of
players into playing positions. The machine learning algorithms (discussed in Section
3.2.2.1) were also considered for the classification modelling analysis.
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Further experiments were conducted to resolve issues faced during the classifica-
tion modelling such as data imbalance problem, data high dimensionality problem, and
the identification of movement patterns importance and contribution for classification
modelling. The methods and or techniques used during classification modelling are
discussed below.

3.3.2.1 Data Representation

Data for classification modelling is represented by observations or instances that serve
as input data. These observations are often described by a set of finite predictor vari-
ables and one target variable with a set of nominal values. In sports analytics literature,
various demographics, genetic markers, anthropometric measurements, and training
intensity indicators (Ayala et al., 2019; Whiteside et al., 2016) are often used as pre-
dictor variables to describe observations of players for classification. In rugby league,
physical performance indicators (Kempton et al., 2017) and the combination of both
physical and technical-tactical performance indicators (Adeyemo et al., 2022; White-
head et al., 2021) have also been utilized for classification modelling. These indicators
(i.e., physical and technical-tactical) are collections of unexplained accumulations of
players’ external loads often aggregated and reported in volume. The classification
modelling in this PhD study differs from others within the domain of sports analytics
and rugby league research because profiled movement patterns of elite rugby league
players were considered as predictor variables to describe the observation of players
per match.

Movement patterns as predictor variables were considered because they describe
players’ match behaviour, captured the sequential nature of match-game characteris-
tics and explain how players accumulate external load. In other words, rugby league
players are represented by observations described by unique movement patterns and
labelled by players’ playing positions. More so, this PhD study is the first attempt to
classify (rugby league) players into playing positions based on movement patterns.

3.3.2.2 Data Sampling

Considering the various classification tasks in this PhD study, different study designs
were implemented leading to a varying number of observations of players representing

62



3.3 Player Movement Profiling

each playing position. When observation of player playing positions are under and or
over-represented, (i.e., class imbalance problem), sampling techniques were utilized.
Sampling techniques avail the balanced representation of observations of players of
each playing position within a given input data for classification modelling.

Two sampling techniques were considered throughout this PhD study to resolve
class imbalance when encountered. These sampling techniques (Lemaı̂tre et al., 2017)
are Synthetic Minority Oversampling TEchnique (SMOTE) and Random Under-Sampler
(RUS). SMOTE is an over-sampling technique that creates “synthetic” observations
of minority class instead of executing an over-sampling with replacement. It creates
a synthetic observation(s) by selecting a random observation from a selected minor-
ity class, with some neighbours and then creates as many synthetic observations at
the point between the selected observation and one of its random neighbours. This
method is effective for over-sampling minority class(es) because the created synthetic
instances are closely related to the selected random instance. RUS, on the other hand,
is simply the random removal of instance(s) from the selected majority class.

3.3.2.3 Classification Model Development and Evaluation

Developing or fitting a classification model can be carried out by splitting a given set
of observations into two where the first and larger partition can be used for training
and the second for testing the developed model. This method is referred to as train-test
split and it is commonly used (Pantzalis and Tjortjis, 2020; Whitehead et al., 2021) in
sports analytics. This method is somehow limited as it carries out model fitting and
evaluation only once on the given data. Additionally, when the number of observations
is limited, splitting them into train and test sets will limit the number of observations
that a classification algorithm can learn from.

A k-fold cross-validation (Adeyemo et al., 2022) method provides an alternative
that allows training and testing of classification models to be performed k-times af-
ter splitting a given data into k partitions and outputs the average scores of any se-
lected performance evaluation metrics. As implemented in Sci-kit learn model (Pe-
dregosa et al., 2011), k-fold cross-validation has three parameters namely: n splits,

random state and shuffle. The n splits parameter determines the number of dataset
partitions created before conducting the training and testing. It also determines the
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Table 3.3: Confusion Matrix (Adeyemo et al., 2022)

Predicted condition
Total population = P + N Positive (PP) Negative (PN)

Actual condition
Positive (AP) True positive (TP) False negative (FN)
Negative (AN) False positive (FP) True negative (TN)

iterative number of times the training and testing will be conducted and the number of
models to be fitted and aggregated for results. The random state parameter ensures the
stability of the cross-validation technique for dataset partitioning as well as fitting of
the models. This in turn ensures the experiment can be repeated multiple times with
exact results. The shuffle parameter is concerned with target variable values represen-
tation in each data partition. It ensures that the instances of target variable values are
not condensed together but rather scattered among themselves. This assists in making
sure all data partitions contain all target variable values.

The evaluation of classification model performances on a test set of observations
is often considered to be better than evaluating on a training set of instances because
the observations in the test set were not included for knowledge inducement by the
learning algorithms. Evaluating the performance of classification models on training
observations will result in an optimistic and biased estimate of classification models.
Meanwhile, performance evaluation of classification models on a test set of obser-
vations not used to fit a model will reflect a real-life application. The evaluation of
classification models is important because it helps to measure the learning process of
each model. Also, it helps to complete a comparative analysis of multiple classification
models’ performances.

Classification accuracy, precision and recall are among the primary performance
evaluation metrics considered for evaluating classification models in various classi-
fication tasks while the F1-score or F-measure metric (Pedregosa et al., 2011) is a
secondary performance evaluation metric. All primary performance evaluation met-
rics can be computed directly from the values within a confusion matrix (depicted in
Table 3.3). The classification accuracy is simply the percentage of correctly classi-
fied instances divided by the total number of instances. Equation 3.9 computes the
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classification accuracy of a classification model(s).

Accuracy =
TP + TN

TP + FP + TN + FN
X100 (3.9)

Precision is the positive predictive value of the classification model, computed in
Equation 3.10. It is the score of correctly classified positive observations with respect
to those predicted as positive.

Precision =
TP

TP + FP
(3.10)

Precision is the total number of true positive observations divided by all positive ob-
servations.

Recall is the sensitivity of the classification model, otherwise referred to as the true
positive rate. It is the score of correctly classified positive observations with respect to
all positive observations and computed as shown in Equation 3.11.

Recall =
TP

TP + FN
(3.11)

Recall is the total number of true positive observations divided by the total number of
observations that should have been identified as positives.

F -measure as the second performance evaluation metric is computed from the val-
ues of precision and recall as shown in Equation 3.12.

F1 = 2
precision× recall

precision+ recall
(3.12)

It is simply the harmonic mean of both recall and precision.

3.3.2.4 Key Movement Patterns for Classification

As revealed through a review of the literature (Section 2.2.1), the application of feature
selection methods is often based on identifying key predictor variables. Also, it is ap-
plied as a means to remove redundant or correlated predictor variables used to describe
the set of observations for classification modelling.

In this PhD study, filter feature subset-selection feature selection techniques were
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considered for the identification of key predictor variables because they output the
best subset of features (without irrelevant and redundant features) through different
mechanisms and without bias to any classification algorithms. There are only two filter
feature subset-selection methods vis-a-vis (i) Correlation-based and (ii) Consistency-
based Subset Evaluator techniques, which are discussed below.

Correlation-based Subset Evaluator: The Correlation-based feature subset is an
example of a filter feature subset-selection method that outputs the subset of variables
with the highest merit score according to the heuristic evaluation function (Ali et al.,
2020; Hall, 1999). Fundamentally, this filter feature subset-selection works by evalu-
ating subsets of features that must be uncorrelated among themselves but highly corre-
lated with the dependent variable (i.e., target class). It uses a search method to find and
select a random set of features and iteratively calculates its merit score. The subset of
features with the highest merit score is outputted as the set of key predictor variables.
The merit score is calculated as follows:

Merits =
ltcf√

l + l(l − 1)ltff
(3.13)

where Ms holds the score after evaluating a subset of s consisting of l variables, tcf
is the average correlation values between subset variables and target variable values,
and tff is the average correlation value between subset variables (Hall, 1999).

Consistency-based Subset Evaluator: Las Vegas (LV) algorithm (Liu et al., 1996)
is a probabilistic approach to finding minimum predictor variables that represent all
features. It is often referred to as the consistency-based Subset Evaluator method,
which is another type of feature selection technique that evaluates the level of consis-
tency of a subset of features to the level of consistency of all features. It is able to
handle noise in data when the approximate noise level is known a-priori. It selects a
random subset of features from the original feature space, evaluates the inconsistency
rate of the subset and compares it with the inconsistency rate of the best subset. If
the new subset of the feature is at least consistent with the best subset, the new subset
replaces the best.
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It is also used with a search method to select subsets of features and output the
subset with the consistency score closest to the full dataset consistency score. The
consistency score is calculated (Binbusayyis and Vaiyapuri, 2019) as follows:

Consistencys = 1−
∑J

n=0 |Di| − |Mi|
N

(3.14)

where s is the candidate feature subset, J is the number of distinct feature values in the
subset, |Di| and |Mi| is the number of occurrences and the cardinality of the majority
class for the ith feature value in the current subset.

However, both filter feature subset-selection techniques use a search method to
randomly select feature subsets before computing their score. The best first search and
the genetic search methods (Witten and Frank, 2002) were considered because both
methods find and choose random features differently. The best first search method
uses greedy hill-climbing enhanced with backtracking to search the feature space for
finding and selecting predictor variables while the genetic search method performs a
feature search using a genetic algorithm.

Feature Importance and Contribution: Feature importance (Polat et al., 2017;
Witten and Frank, 2002) reveals the order of features (i.e. predictor variables) as im-
portant to each classification model to predict the class (i.e. target variable value) an
observation belongs to. It helps to quantify and describe how important the feature
was for the classification model performance. However, the feature importance of data
for one model is not usually important for another model. Also, feature importances
can either be modular global or local importance. Modular global feature importance
measures the importance of the feature for an entire model while local importance
measures the contribution of the feature for a specific observation.

Feature contribution or local importance helps in explaining how predictive model(s)
utilized the predictor variables and how much influence each predictor variable had
while the model made each classification decision. The ability to correctly interpret a
prediction model’s output is extremely important (Lundberg and Lee, 2017) because it
assists in understanding the process being modelled and enables user trust and provides
insight into how a model can be further enhanced. Lundberg and Lee (2017) presented
SHapley Additive exPlanation (SHAP) as a unified framework for interpreting models
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predictions against six existing methods such as Local Interpretable Model-agnostic
Explanations (LIME), Deep Learning Important Feature (DeepLIFT) and Layer-Wise
Relevance Propagation among others. SHAP values offer feature importance with lo-
cal accuracy, missingness and consistency. Local accuracy offers a model’s explana-
tion for a specific observation predicted accuracy. It illustrates the contribution of each
predictor variable towards getting the accuracy from the base value E[f(z)] to the pre-
dicted accuracy f(x). Missingness handles missing predictor variables and they have
no impact on the computation of predictor variables’ importance or contribution. Con-
sistency ensures the input’s attribution does not decrease even if a model changes so
that some predictor variable increases or remains the same. Concisely, SHAP value
is an additive predictor variable attribution method that unified six other methods for
interpreting classification model(s) through feature importance and contribution.

The filter feature subset-selection feature selection and classification models’ im-
portance techniques are primarily applied to identify key movement patterns while
SHAP values feature importance and contribution method was used to uncover the
most contributing movement patterns used by the classification model to classify play-
ers into positional groups. Altogether, feature selection, importance and contribution
methods are used to identify the significant movement patterns of players for classify-
ing players into playing positions.

3.3.3 Movement Performance Indicators (MPIs)

Additional application of movement patterns was carried out through the use of the re-
sults of the identified key and significant extracted movement patterns across playing
positions for player performance variability assessment. Players’ performance vari-
ability is a longitudinal study that involves the identification of a set of movement
patterns as “Movement Performance Indicators (MPIs)” useful to assess and visualise
rugby league players’ performance variability over a number of fixtures. Significant
and key movement patterns were identified during the classification modelling of play-
ers into playing positions to establish MPIs. MPIs are identified by cross-matching
key movement patterns identified through the filter feature subset-section technique
(discussed in Section 3.3.2.4) and significant movement patterns identified through
SHAP value feature contribution method (discussed in Section 3.3.2.4) across play-
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ing positions. The “Movement Performance Indicators” are then used to assess the
performance variability of players across playing positions.

Overall, the identification of the signature movement patterns of each RFL playing
position was explored. An investigation of the use of movement patterns (and appro-
priate values) as predictor variables to classify RFL players into playing positions was
considered. The consideration of the development and evaluation of multiple classi-
fication models to discover the best model was also explored. Also, the discovery of
key movement patterns through two feature selection methods and significant move-
ment patterns through feature importance and contribution techniques were made. The
establishment of “Movement Performance Indicators” and its demonstration for per-
formance variability assessment was explored. The results of this are presented and
discussed in Chapter 6.

3.4 Chapter Summary

This chapter presented and discussed a methodology used by this PhD study. Each
subsequent chapter conducted the experiments described per section in this chapter,
towards achieving the aim of this PhD study. More so, each subsequent chapter con-
tains a method section that provides explicit information about its design as well as
results and discussions.

69



Chapter 4
LCCspm: l-Length Closed Contiguous
sequential pattern mining algorithm

In chapter 3, the limitations of the existing framework used in sports for player move-
ment profiling were critically analysed and the need for the development of a new
algorithm for extracting player movement patterns was justified (Section ). This chap-
ter formulates, implements, optimised and evaluates a novel sequential pattern-mining
algorithm. This chapter fulfils the second objective of this PhD study. The novel algo-
rithm was presented at International Conference on Machine Learning and Application
(ICMLA) and is published (Adeyemo et al., 2021) in an online proceeding by The In-
stitute of Electrical and Electronics Engineers (IEEE).

4.1 l-Length Closed Contiguous Pattern Mining

A suitable sequential pattern mining algorithm for player movement profiling will ide-
ally produce (movement) patterns that satisfy four criteria which are:

• user-specified maximal length,

• item contiguousness,

• user-defined frequency threshold, and

• frequent pattern lossless compression.
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In a holistic effort to resolve both theoretical and practical limitations of existing
algorithms for player movement profiling, this thesis explored the development of a
sequential pattern mining algorithm for mining closed contiguous patterns whose in-
terestingness is based on user-defined maximal length of patterns and user-specified
support threshold while it fulfils other criteria (i.e. item contiguousness and frequent
pattern lossless compression). We refer to this algorithm as l-length Closed Contigu-
ous sequential pattern mining algorithm (i.e., LCCspm).

In this section, the problem of l-length closed contiguous sequential pattern prob-
lem is formulated and formalised. The proposed LCCspm algorithm approaches for
candidate generation and search-space pruning as well as pattern-closure check are
discussed and compared with existing algorithms. Also, the proposed LCCspm algo-
rithm (using pseudo-code) and its complexity are analysed and discussed. However,
basic definitions and concepts in sequential pattern mining are re-introduced.

4.1.1 Basic Concepts and Definitions

An item is a basic unit or the lowest granularity in pattern mining. An itemset is a set
of characters or integers that forms up the sequences in a set of movement sequences.
Let I = {i1, i2, i3, ..., ik} be a set of distinct items. A sequence S = (j1, j2, j3, ..., jm)

is any series of ordered items in a set of movement sequences (SDB), where j1 ∈ I

is an item for 1 ≤ i ≤ m. Concisely, a sequence can be written as j1j2j3...jm. It is
important to mention that an item j1 can appear more than once in a sequence S. The
size of the sequence S, denoted as |S|, is the number of distinct items in the sequence
and the length of the same, denoted as l(S), is the total number of items contained in the
sequence regardless of the repeated item(s). In other words, the length of a sequence
l(S) is the count of all ordered itemset of any given sequence. Based on sequence s

above, the length of the sequence i.e. l(S) = m. A set of movement sequences (SDB)

is a list of sequences i.e. SDB = {S1, S2, . . . , Sn} where each sequence has a unique
identifier (i.e. ID).

Definition 4.1.1. Considering two sequences, S1 = (x1x2x3 ... xm) and S2 = (y1y2y3

... yn), S1 is contained or is a sub-sequence of S2 (denoted as S1 ⊑ S2 or S1 ⊏ S2 if
S1 ̸= S2), if and only if there exist integers 1 ≤ k1 < k2 < k3 < ...km ≤ n and such
that x1 = yk1, x2 = yk2, x3 = yk3, ..., xm = ykm. S1 can be referred to as a snippet
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or sub-sequence of S2 while S2 can be referred to as a super-sequence of S1 or said to
contain S1.

Definition 4.1.2. A sub-sequence s∗ is said to be contiguously contained in another
(sub) sequence S, if and only if all the ordered items of s∗ are exactly contained as the
starting itemset of S, whose l(S) must be higher between the two sequences.

Definition 4.1.3. Given a set of movement sequences G and a sub-sequence s∗, the
absolute support of the sub-sequence s∗ in a set of movement sequences G is the total
count of sequences in a set of movement sequences G that contains s∗. This is denoted
as SupaG(s

∗) = |{S|S ∈ G ∧ s∗ ⊑ G}. Meanwhile, the percentage share of sequences
in G that contains s∗ is referred to as its relative support. This is also denoted as
SuprG(s

∗) =({|S|S ∈ G ∧ s∗ ⊑ G} / |G|) * 100.

Definition 4.1.4. Given a set of movement sequences G and a sub-sequence s∗, the
sub-sequence s∗ is frequent if and only if its support value equals or is greater than the
specified threshold = “σ”.

Definition 4.1.5. A contiguous sequential pattern s in a set of movement sequences G
is referred to as a closed contiguous pattern if there exist no other contiguous sequential
patterns s′ such that s′ are super-sequences of s and that the SupaG(s) == SupaG(s

′).

Definition 4.1.6. l-length closed contiguous sequential patterns is the dictionary of
all closed contiguous sequential patterns and its corresponding support value whose
maximal length does not exceed l.

The parameter “l” is a user-defined parameter which serves as a sliding window for
mining patterns. The parameter “l”, in this case, ensures that patterns of greater length
value are not considered during candidate generation, search space pruning and pattern
closure checking phases.

Given a set of sequences G, a user-defined maximal length l and a minimum sup-
port threshold σ, the problem of “l”-length closed contiguous pattern mining can be
concisely described as the extraction of a dictionary of sub-sequences from G (i.e.,
where the keys contain all frequent closed contiguous patterns and the values corre-
spond to its absolute support score) where the length of any of those key is lesser than
or equal to the user-defined length l.
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Example 4.1.1. to illustrate the “l”-length closed contiguous pattern mining problem,

suppose Table 2.1 is a set sequences G, an absolute support σ of 5 is specified and the

user-defined “l” parameter was set to value 4. The set of sequences G contains ten (10)

distinct items: [’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’]. The complete dictionary of 4-

length contiguous patterns and its corresponding support is 4cp = {’a’: 6, ’b’: 6, ’c’:

6, ’d’: 6, ’e’: 6, ’f’: 6, ’aa’: 6, ’ab’: 6, ’bb’: 6, ’bc’: 6, ’cd’: 6, ’de’: 6, ’ef’: 5, ’fc’:

5, ’aab’: 6, ’abb’: 6, ’bbc’: 6, ’bcd’: 6, ’cde’: 6, ’def’: 5, ’efc’: 5, ’aabb’: 6, ’abbc’:

6, ’bbcd’: 6, ’bcde’: 6, ’cdef’: 5, ’defc’: 5}. Meanwhile, the complete dictionary of 4-

length closed contiguous patterns and its corresponding support is 4ccp = {’cdef’: 5,

’bcde’: 6, ’defc’: 5, ’aabb’: 6, ’f’: 6, ’abbc’: 6, ’bbcd’: 6}. There were twenty-seven

4cp (i.e., 4− length contiguous patterns) and only seven 4ccp (i.e., 4− length closed

contiguous patterns). The result of this example (and another l parameter value) is

presented in Table 4.1.

Table 4.1: Examples of types of frequent patterns extracted from Table 2.1 (Adeyemo,
2023)

Patterns Type Frequent pattern (σ = 5, l = 4) Frequent Sequence (σ = 5, l = 8)
Contiguous {’a’: 6, ’b’: 6, ’c’: 6, ’d’: 6, ’e’: 6, ’f’: 6,

’aa’: 6, ’ab’: 6, ’bb’: 6, ’bc’: 6, ’cd’: 6,
’de’: 6, ’ef’: 5, ’fc’: 5, ’aab’: 6, ’abb’: 6,
’bbc’: 6, ’bcd’: 6, ’cde’: 6, ’def’: 5, ’efc’:
5, ’aabb’: 6, ’abbc’: 6, ’bbcd’: 6, ’bcde’:
6, ’cdef’: 5, ’defc’: 5}

{’a’: 6, ’b’: 6, ’c’: 6, ’d’: 6, ’e’: 6, ’f’: 6,
’aa’: 6, ’ab’: 6, ’bb’: 6, ’bc’: 6, ’cd’: 6,
’de’: 6, ’ef’: 5, ’fc’: 5, ’aab’: 6, ’abb’: 6,
’bbc’: 6, ’bcd’: 6, ’cde’: 6, ’def’: 5, ’efc’:
5, ’aabb’: 6, ’abbc’: 6, ’bbcd’: 6, ’bcde’: 6,
’cdef’: 5, ’defc’: 5, ’aabbc’: 6, ’abbcd’: 6,
’bbcde’: 6, ’bcdef’: 5, ’cdefc’: 5, ’aabbcd’:
6, ’abbcde’: 6, ’bbcdef’: 5, ’bcdefc’: 5,
’aabbcde’: 6, ’abbcdef’: 5, ’bbcdefc’: 5,
’aabbcdef’: 5, ’abbcdefc’: 5}

l-Closed Contiguous {’cdef’: 5, ’bcde’: 6, ’defc’: 5, ’aabb’: 6,
’f’: 6, ’abbc’: 6, ’bbcd’: 6}

{ ’aabbcdef’: 5, ’f’: 6, ’abbcdefc’: 5, ’aab-
bcde’: 6 }

LCCspm is a three-step algorithm designed to identify patterns that have contigu-
ous and closed properties while none of those patterns’ lengths exceeds a set value.

• The first step, candidate generation, involves splitting each sequence S of a given
set of sequences G into snippets of 1-length and incrementally to the user-defined
maximal length. This snippet-growth method ensures that the order of items
within the sequences is preserved in the pattern and gives no room for false
pattern generation.
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• The second step explored the support pruning method for removing infrequent
candidates thereby reducing the search space for checking pattern closure.

• In the third step, the frequencies of the remaining candidates are afterwards pro-
cessed to identify those that satisfied the closed properties of the contiguous
patterns as stated in Definition 4.1.6.

Prior to discussing the proposed algorithm, the approaches taken for the proposed
algorithm’s patterns candidate generation and search space pruning as well as checking
for the closed properties of frequent patterns are justified and discussed below.

4.1.2 Candidate Generation and Search Space Pruning Approach

As revealed in Section 2.4, the common method with which conventional sequential
pattern mining algorithms generate sequential pattern candidates is by generating lower
length patterns, k-length, and enumerating all possible combinations of longer length,
k+1 length, patterns before proceeding to check for its frequency. The existing Gen-
eralized Sequential Pattern (GSP) algorithm (Srikant and Agrawal, 1996) uses the S-
extension and i-extension methods for candidate generation of lower-length patterns
before generating potential longer candidate patterns through joins of shorter ones.
PrefixSpan (Han et al., 2001) perform a recursive projection of a set of sequences into
a small projected size and use the level-by-level projection and bi-level projection to
grow its potential candidate patterns. Other algorithms such as “CloFAST” (Fumarola
et al., 2016) make use of the closed itemset enumeration tree (CIET) to enumerate its
complete set of candidate patterns. These common methods of enumerating poten-
tial longer candidate patterns (discussed in Section 2.4) are reported to consume more
memory and had a track record of increased execution runtime. Additionally, these
methods generate false patterns which are not good for some real-world applications.
In a real-time (sports) application, the production of non-adjacent items as if they ex-
ist within a pattern is unsuitable for tasks involving movement profiling or athletes.
Besides, false patterns will lead to gross misrepresentation and wrong locomotive ac-
tivities reproduction for training programmes and or talent identification in practice.

Hence, the proposed LCCspm algorithm utilizes a snippet-growth approach for
candidate pattern generation and considers search space pruning alongside candidate

74



4.1 l-Length Closed Contiguous Pattern Mining

generation to reduce the total number of patterns to be held in the search space. Can-
didate patterns are produced by slicing sequences of the input set of sequences into the
desired length of maximal patterns starting from 1-length patterns. However, all poten-
tial candidates are not generated and all sequences are not sliced to generate candidate
patterns in the bid for algorithmic (memory and time) efficiency. The proposed LCC-
spm algorithm utilizes a dictionary data structure to store generated candidate patterns
as they are being sliced out of sequences. A dictionary data structure consists of pairs
of keys and values where each key is unique and can be used to reference a (list of)
values. This implementation helps to remove repeated candidate patterns on the fly
without having to employ another method to check for duplicates. See Example 4.1.2
for an illustration.

More so, all sequences are not considered for candidate pattern generation. Based
on the user-specified relative support value, the corresponding absolute support can be
calculated and used to extract a subset of the given set of sequences or set a range
of sequences to consider. Any candidate patterns that can be generated outside of
this subset of sequences can not satisfy the frequency threshold, thus infrequent. If
mined alongside others, they will ultimately be pruned by the support pruning method.
Between creating a new subset of sequences and setting the range of sequences to
consider from the original set of sequences based on the absolute support value, the
latter is memory efficient, a more effective method and was implemented.

Given a set of sequences G, let S be a sequence in G, “l” be a user-defined positive
integer value and “σ” be a placeholder for the user-specified relative support. Candi-
date patterns are sliced from every sequence with sequence identifier (i.e., S.ID) rang-
ing from 1 to SupaG(s

∗) (i.e., S1, S2, ..., Sq; where q is the absolute support value).
The length of the candidate patterns starts from one-length patterns (sub-sequence) to
l-length patterns. The patterns form the dictionary keys and the values are set to a
default 0.

Example 4.1.2. Considering the first sequence in Table 2.1 , i.e., S1 = (aabbcdefcc-

cdcgc); a relative support threshold “σ” = 75%; and length l = 3. The dictionary of

candidate patterns of 1-length (i.e., C1) is created by slicing S1. The following dictio-

nary, i.e., {’a’: 0, ’b’: 0, ’c’: 0, ’d’: 0, ’e’: 0, ’f’: 0, ’g’: 0}, is being generated. The

C2 dictionary of candidate patterns from S1 is: {’aa’: 0, ’ab’: 0, ’bb’: 0, ’bc’: 0, ’cd’:

0, ’de’: 0, ’ef’: 0, ’fc’: 0, ’cc’: 0, ’dc’: 0, ’cg’: 0, ’gc’: 0}. Lastly, the C3 dictionary
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of candidate patterns from S1 contains {’aab’: 0, ’abb’: 0, ’bbc’: 0, ’bcd’: 0, ’cde’:

0, ’def’: 0, ’efc’: 0, ’fcc’: 0, ’ccc’: 0, ’ccd’: 0, ’cdc’: 0, ’dcg’: 0, ’cgc’: 0}.

From Example 4.1.2, the keys of all dictionaries (i.e. C1, C2 and C3) is seen to con-
tain unique candidate patterns from S1. The values, representing the absolute support
score, are set to the default value of 0 (as the support is not computed in this step). In
total, thirty-two candidate patterns were generated from only the first sequence. How-
ever, the size of the candidate patterns does not grow exponentially with respect to
the number of sequences in the set of sequences. This is because the dictionary data
structure was implemented to store only unique candidate patterns. See Example 3 for
details.

Example 4.1.3. Considering all the sequences in Table 2.1, i.e., S1S2S3S4S5S6 and

with parameters same as declared in Example 3.2.1, the generated candidate patterns

are held in a dictionary as follows: {’a’: 0, ’b’: 0, ’c’: 0, ’d’: 0, ’e’: 0, ’f’: 0, ’g’: 0,

’h’: 0, ’i’: 0, ’j’: 0, ’aa’: 0, ’ab’: 0, ’bb’: 0, ’bc’: 0, ’cd’: 0, ’de’: 0, ’ef’: 0, ’fc’: 0,

’cc’: 0, ’dc’: 0, ’cg’: 0, ’gc’: 0, ’ec’: 0, ’cf’: 0, ’fg’: 0, ’gh’: 0, ’hc’: 0, ’ce’: 0, ’ed’:

0, ’dh’: 0, ’eg’: 0, ’ei’: 0, ’ij’: 0, ’aab’: 0, ’abb’: 0, ’bbc’: 0, ’bcd’: 0, ’cde’: 0, ’def’:

0, ’efc’: 0, ’fcc’: 0, ’ccc’: 0, ’ccd’: 0, ’cdc’: 0, ’dcg’: 0, ’cgc’: 0, ’dec’: 0, ’ecf’: 0,

’cfg’: 0, ’fgh’: 0, ’ghc’: 0, ’hce’: 0, ’ced’: 0, ’edh’: 0, ’fcd’: 0, ’dcd’: 0, ’dcf’: 0,

’fce’: 0, ’ceg’: 0, ’egh’: 0, ’cei’: 0, ’eij’: 0}

From Example 4.1.3, sixty-two candidate patterns were seen to be generated from
the sequences database which does not double the size of candidate patterns generated
from one sequence in the sequences database (as explained in Example 2). In contrast,
assuming a 2-tuple set was used as a data structure to hold candidate patterns, one
hundred and sixty-eight candidate patterns would have been held in memory until or
unless a conditional check is conducted to remove duplicates.

After generating candidate patterns, they were further pruned for frequency using
the support pruning method. Given that candidate patterns were generated without
considering all sequences in the sequences database, the support pruning method sim-
ply scans the database to count the number of sequences that uniquely contain each
candidate pattern. The absolute support for each candidate pattern was stored as the
values in the dictionary based on the corresponding key.
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The approach for the discovery of closed contiguous patterns among the dictionary
keys is discussed in Section 4.1.3

4.1.3 Pattern Closure Checking Approach

As discussed in Section 2.4.3, the use of a lower support threshold when extracting or
mining patterns often leads to the extraction of a large number of frequent patterns and
in turn, degrades the performance of most algorithms. The pattern closure problem
i.e. (frequent closed pattern) was originally formulated as a solution to this problem.
A set of closed patterns is a smaller but complete set (i.e. lossless) of results derived
from the large set of resulting frequent patterns. Concisely, frequent closed contiguous
patterns are a smaller and lossless set of frequent contiguous patterns.

As defined in Definitions 4.1.5 and 4.1.6, closed contiguous patterns are frequent
patterns without super-sequences with the same support. Contextually, pattern clo-
sure checking involves investigating if a frequent contiguous pattern is contained by
a longer frequent contiguous pattern (super-sequence) and whether both patterns have
the same support (see Definition 4.1.5). The basic implementation of pattern closure
checking entails comparing each pattern among the frequent patterns to identify the set
of frequent closed contiguous patterns. This solution is computationally expensive as
it is a O(N2) complexity, where N is the number of patterns.

This thesis explored another solution for pattern closure checking that avoids the
O(N2) complexity. The solution is based on the (and refer to) inverse characteristic

of frequent closed contiguous patterns which can be described as:
The set of obtainable or extracted sub-sequences (with support value) from a set

of super-sequences are non-closed patterns because they are contained in the super-

sequence. Therefore, the collection and removal of those extracted sub-sequences will

result in discovering the frequent closed contiguous patterns.
Frequent l-length closed contiguous patterns were discovered by extracting sub-

sequences from the frequent l-length contiguous patterns, pairing each extracted sub-
sequences with its frequent l-length contiguous pattern support value and the final
removal of those sub-sequence and support pairs from the dictionary of frequent con-
tiguous patterns. The complexity of this pattern-checking solution as well as candidate
generation and support pruning is discussed in the complexity analysis section (Section

77



4.1 l-Length Closed Contiguous Pattern Mining

4.1.6) after presenting the algorithm itself (Section 4.1.4).

4.1.4 LCCspm Algorithm (Memory-Optimised)

LCCspm is a three-step pattern mining algorithm (discussed in Section 4.1.1) that ulti-
mately finds the closed contiguous patterns whose frequency equals or exceeds a given
relative support SuprG(s

∗) and whose length does not exceed a user-defined length l. It
accepts a two-columned data frame as input, where the first column holds the sequence
identifier (S.id) and the second column contains the sequences. However, it processes
the second column into a list and makes use of the latent list index as S.id.

The candidate patterns, frequent contiguous patterns and frequent closed contigu-
ous patterns are stored in a similar data structure: a dictionary {s∗,SupaG(s∗)}, where
s∗ is a pattern stored as key and SupaG(s

∗) is the absolute support of the pattern. The
algorithms produce three outputs in succession. The first is the candidate patterns
dictionary which is processed to obtain the second output. The second output is the
frequent contiguous patterns dictionary which is also processed to obtain the third out-
put. The third and final output is the frequent closed contiguous pattern dictionary
which contains all the closed contiguous patterns in the given sequences database that
satisfies the user-defined length l and relative support SuprG(s

∗) threshold.
The LCCspm algorithm was formulated and presented as a pseudo-code in Algo-

rithm 2. It is made up of three classes (i.e., Mining, Pruning and Closed) representing
each of its steps. Given a set of sequences G, a relative support threshold SuprG(s

∗)

as a threshold (i.e., σ) and a user-defined l, three global variables (i.e., 0, IandF )
are defined for storing generated candidates, pruned contiguous patterns and l-length
closed contiguous patterns. Three class objects (i.e., explorer, prune and closure)
were instantiated which correspond to the three stages of LCCspm (See lines 1 -
4). The explorer object of class “Mining” is responsible for loading and transform-
ing a set of sequences, calculation of sequence with the maximum length, computing
the summation of all sequence lengths, calculation of the average length of the se-
quences in the sequences database, identification of itemsets (i.e. unique items in the
sequences database), calculation of the sequences database size (i.e., the total number
of sequences) and generation of candidate patterns.

The prune object of class “Pruning” converts the user-specified relative support
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Algorithm 2 LCCspm (Memory-Optimised) Pseudocode

Input: SDB G, SuprG(s
∗) =σ, maximal-length l

Output: l-length closed contiguous sequential patterns, SUP a(s∗)
O ← ∅ // dictionary for storing the generated candidates
I ← ∅ // dictionary for storing the frequent contiguous patterns
F ← ∅ // dictionary for storing l-length frequent closed contiguous patterns

1: explorer ←Mining(str(name)) // Instantiate class object “Mining”
2: explorer.load data(G) // loads data G
3: prune← Pruning(str(name), explorer) // Instantiate class object “Pruning”
4: closure← Closed(str(name)) // Instantiate class object “Closed”
5: O = explorer.setl mine(maximal-length l, σ) // generate contiguous patterns
6: I = prune.setsupportprunning(O, σ) // contiguous patterns support pruning
7: F = closure.closed(I) // discover closed contiguous patterns
8: return F

into absolute support, computes the absolute support of candidate patterns, and outputs
the dictionary of contiguous patterns and their respective absolute support scores.

The closure object of class “Closed” is tasked with identifying closed contiguous
patterns from a dictionary of contiguous patterns.

Each class contains defined functions which are inherited by its object. The func-
tion “load data()” of the explorer object was invoked (Algorithm 2, line 2) for load-
ing a two-column data frame that contains sequence ID and sequences (in this order)
and transforming it into a list containing a set of sequences. The pseudo-code of the
function “load data()” is presented in Algorithm 3. From Algorithm 3, the function
load data() accepts the path to the data frame directory and returns no output. The
function performs the processing of the sequences into a list (Algorithm 3, line 2)
and computes the size of the set of sequences (Algorithm 3, line 3). The function
“load data()” also computes the maximum length of sequences. It declares the place-
holder in Algorithm 3, line 4 and runs the code snippet (line 7 - 12) to find the sequence
with the maximum length. Also, the total length of all sequences in the set of sequences
is computed (Algorithm 3, line 13 - 16) and stored in a placeholder sdbSummation

(Algorithm 3, line 5). Lastly, the function “load data()” calculates the average length
of the set of sequences and stores it in a placeholder (Algorithm 3, line 17).

The function “ setl mine()” of the object explorer which receives two parameters
(maximal-length l, σ) was invoked (Algorithm 2, line 5) for candidate pattern gener-
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Algorithm 3 Function: load data(G)
Input: path to data frame G
Output: {s∗,0}

1: data← dataframe(path) // stores the 2-columned dataframe
2: SDB ← data.iloc[0:,1].tolist() // List of sequences
3: sdbSize← len(SDB) // compute the size of the set of sequences
4: sdbMaxLen = 0
5: sdbSummation = 0
6: sdbAvgLength = 0
7: for sequence in SDB do
8: maxl← len(sequence)
9: if ( maxl > sdbMaxLen) then

10: sdbMaxLen = maxl
11: end if
12: end for
13: for sequence in SDB do
14: length← len(sequence)
15: sdbSummation += length
16: end for
17: sdbAvgLength = round(sdbSummation / sdbSize)

ation through snippet growth and search space pruning. The first parameter, maximal
length l, ensures that snippets of candidate patterns do not exceed the value of l. The
second parameter, σ, is the relative support, ensuring that sequences that will produce
infrequent patterns are not considered during the snippet growth method for candidate
pattern generation. The pseudo-code of the function setl mine() is presented in Al-
gorithm 4. It has two local variables, the first is the SupaG(s

∗) which is the computed
absolute support value. The absolute support is calculated by dividing the supplied
relative support σ by 100 and multiplying the result by the sdbSize before rounding
the final score (Algorithm 4, line 1). The computed absolute support was used to set
the range of sequences to consider during snippet growth candidate pattern generation
(Algorithm 4, line 7). The second local variable is declared as an empty dictionary
(Algorithm 4, line 2). It stores the snippets (i.e. generated patterns) through dictionary
updates and removes duplicates on the fly because the dictionary does not support du-
plicates (Algorithm 4, line 11). The generation of candidates pattern through snippet
growth is performed by generating patterns starting from 1-length contiguous patterns
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Algorithm 4 Function: setl mine(maximal-length l, σ)

Input: l, σ = SuprG(s
∗)

Output: GeneratedCandidates = {s∗,0}
1: SupaG(s

∗) = round( ( (σ /100) * sdbSize ) )
2: GeneratedCandidates← ∅ // dictionary for storing the generated candidates
3: if l == sdbMaxLen then
4: l = l -2
5: end if
6: for n in range l do
7: for m in range SupaG(s

∗) do
8: start← 0
9: end←− n+ 1

10: while end <= len(SDB[m]) do
11: GeneratedCandidates.update({SDB[m][start : end] : 0})
12: start+ = 1
13: end+ = 1
14: end while
15: end for
16: end for
17: return GeneratedCandidates

up to the user-defined length l contiguous patterns and pairing such patterns with the
default value 0 before storing them into the dictionary (Algorithm 4, line 6 - 16). Af-
terwards, the updated dictionary is returned (Algorithm 4, line 17).

The function “setsupportprunning()” of the object prune which receives two pa-
rameters (O, σ) was invoked (Algorithm 2, line 6) for support pruning. The first pa-
rameter, O, is the dictionary of contiguous patterns. The second parameter, σ, at this
phase ensures that candidate patterns with relative support that equals or exceeds the
set threshold are considered while others are discarded. This function starts the second
phase of the LCCspm algorithm - the identification of frequent contiguous patterns.
Its pseudo-code is presented in Algorithm 5. It computes the equivalent absolute sup-
port of contiguous patterns using the given relative support and size of the given set of
sequences (Algorithm 5, line 1). This function has one local variable SupportList, also
declared as an empty dictionary which is used for storing frequent candidate patterns
(Algorithm 5, line 2). The function counts the number of sequences that contain each
candidate pattern (Algorithm 5, line 3-8) but only considers those whose absolute sup-
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Algorithm 5 Function: setsupportpruning(O, σ)

Input: mined, σ = SuprG(s
∗)

Output: SupportList = {s∗,SupaG(s∗)}
1: SupaG(s

∗) = round( ( (σ /100) * sdbSize ) )
2: SupportList← ∅ // dictionary for storing the frequent candidates
3: for s∗ in mined.keys() do
4: supp value← len([i for i ∈ SDB if s∗ in i])
5: if supp value >= SupaG(s

∗) then
6: SupportList.update({s∗ : supp value})
7: end if
8: end for
9: return SupportList

port is equal and or greater than the user-specified threshold (Algorithm 5, line 5-7)
and store them into the local variable SupportList. In the end, it returns a dictionary of
frequent contiguous patterns (Algorithm 5, line 9).

The function “closed()” of the object closure was invoked (Algorithm 2, line 7) to
identify the closed contiguous patterns from the dictionary of contiguous patterns. It
takes only one parameter, I . The parameter passes the dictionary of contiguous passed
into the function. Lastly, the LCCspm algorithm output a dictionary of closed contigu-
ous patterns F , where F = {s∗,SupaG(s∗)}. The pseudo-code of the function closed()

is presented in Algorithm 6. It has two local variables ClosedList and nonClosed.
ClosedList is the dictionary that stores the l-length closed contiguous patterns while
nonClosed holds the set of extracted sub-sequences. Each frequent contiguous pattern
is treated as a super-sequence and its sub-sequences were extracted with the exception
of 1-length patterns. For each pair of frequent contiguous pattern and its absolute
support value, its sub-sequences were extracted (Algorithm 6, line 4 - 6), each sub-
sequences is paired with the super-sequence absolute support value and added to the
nonClosed local variable (Algorithm 6, line 7). In Algorithm 6 (line 11), All frequent
contiguous patterns that are contained in the extracted sub-sequences were removed.
The remnants are the l-length closed contiguous patterns stored in ClosedList which
was returned (Algorithm 6, line 12).

The LCCspm (Memory-Optimised) algorithm was implemented using the Python
programming language. It was written in the Object-Oriented Programming format.
Each object (i.e., explorer, prune and close) was written as a class. It is available
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Algorithm 6 Function: closed(I)
Input: SupportList
Output: ClosedList = {s′ , SupaG(s

′
)}

1: ClosedList← ∅ // dictionary for storing l-length closed contiguous patterns
2: nonClosed← set() // set of extracted sub-sequences
3: for s∗, supp value in SupportList do
4: for width in range(1, len(s∗)) do
5: for begin in range(len(s∗) + 1 – width) do
6: sβ ← s∗ [begin: begin + width]
7: nonClosed.add(sβ , supp value)
8: end for
9: end for

10: end for
11: ClosedList← dict((SupportList.items() – nonClosed))
12: return ClosedList

as a package which can be cloned or downloaded from GitHub repository (Adeyemo,
2021a).

4.1.5 LCCspm Algorithm (Time-Optimised)

LCCspm (Memory-Optimised) is designed as a three-step pattern mining algorithm
and it is envisaged the support counting phase reduced the algorithm’s efficiency. Con-
sidering how LCCspm (Memory-Optimised) counts the support of each candidate pat-
tern (Algorithm 5, line 6), it passes over a given set of sequences multiple times (corre-
sponding to the number of candidate patterns). This can be a limitation when extracting
frequent patterns, especially from a voluminous set of sequences. Multiple passes on
a set of sequences are among the identified limitations of existing apriori-based se-
quential pattern mining algorithms (discussed in Section 2.4.1) which are resolved by
either vertical representation of a given set of sequences or utilization of pattern growth
technique (discussed in Section 2.4.2).

The LCCspm (Time-Optimised) algorithm was developed by implementing a form
of vertical representation of generated candidate patterns to achieve maximum effi-
ciency in time and cost for extracting closed contiguous frequent patterns. The pattern
growth was not considered because it requires recursive scans while being expensive
and also this time-optimised LCCspm algorithm is based on the snippet growth ap-
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Algorithm 7 LCCspm (Time-Optimised) Pseudocode

Input: SDB G, SuprG(s
∗) =σ, maximal-length l

Output: l-length closed contiguous sequential patterns, SUP a(s∗)
J ← ∅ // set for storing l-length frequent closed contiguous patterns

1: lccspmObject← LCCspm(str(name)) // Instantiate class object “LCCspm”
2: lccspmObject.load data(G) // loads a set of sequences G
3: J = lccspmObj.run(maximal-length l, σ) // discover closed contiguous patterns
4: return J

proach to avoid false pattern generation. To efficiently count patterns’ support, a set
of 2-tuple data structure is utilised to store candidate patterns and index pairs (in this
order) as each pattern is generated through the snippet growth method. This data struc-
ture was considered because it removes duplicates on the fly. Importantly, the LCCspm
(Time-Optimised) algorithm was developed to extract all closed contiguous frequent
patterns from a given set of sequences based on a single pass while ensuring too much
memory was not consumed.

The LCCspm (Time-Optimised) algorithm was formulated and presented as a pseudo-
code in Algorithm 7. It is made up of just one class (i.e., LCCspm). Given a set of
sequences G, a relative support threshold SuprG(s

∗) as σ and a user-defined l, one
global variable (i.e., J) is defined for storing l-length frequent closed contiguous pat-
terns. The class object (i.e., lccspmObject) was instantiated to run the LCCspm (Time-
Optimised) algorithm (Algorithm 7, line 1). The “lccspmObject” object of class “LCC-
spm” performs all the necessary tasks for the algorithm to run, including loading and
transforming a set of sequences, calculation of sequence with the maximum length,
computing the summation of all sequence lengths, calculation of the average length of
the sequences in the sequences database, identification of itemsets (i.e. unique items in
the sequences database), calculation of the sequences database size (i.e., the total num-
ber of sequences), generation of candidate patterns and extraction of frequent closed
contiguous patterns. The function run of “lccspmObject” object (Algorithm 7, line 3)
executes the LCCspm (Time-Optimised) algorithm.

The pseudo-code of the function run is presented in Algorithm 8. Instead of count-
ing the support of each candidate pattern, the LCCspm (Time-Optimised) algorithm
first paired up each candidate pattern (snippet) with the index of the sequences where
it was sliced and add such pair to a set of 2-tuple (Algorithm 8, lines 2-15). Afterwards,
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Algorithm 8 Function: run(maximal-length l, σ)

Input: l, σ = SuprG(s
∗)

Output: ClosedContiguousFrequentPatterns = {s′ , SupaG(s
′
)}

1: SupaG(s
∗) = round( ( (σ /100) * sdbSize ) )

2: Candidates← ∅ // set for storing the candidates pattern and index pairs
3: for n in range l do
4: for m in range G do
5: start← 0
6: end←− n+ 1
7: while end <= len(G[m]) do
8: pattern = G[m][start:end]
9: pair (pattern, m+1)

10: Candidate.add(pair)
11: start+ = 1
12: end+ = 1
13: end while
14: end for
15: end for
16: FrequentCandidates← ∅
17: Candidates = sorted (Candidates, key=operator.itemgetter(0))
18: for pattern, index in groupby(Candidates, operator.itemgetter(0)) do
19: pattern Indexes = (pattern, [item[1:] for item in indexes])
20: absSupport = len(pattern Indexes[1])
21: if absSupport >= SupaG(s

∗) then
22: frequentPair = (pattern, absSupport)
23: FrequentCandidates.add(frequentPair)
24: end if
25: end for
26: nonClosed← set() // set of extracted sub-sequences
27: for s∗, supp value in FrequentCandidates do
28: for width in range(1, len(s∗)) do
29: for begin in range(len(s∗) + 1 – width) do
30: sβ ← s∗ [begin: begin + width]
31: nonClosed.add(sβ , supp value)
32: end for
33: end for
34: end for
35: ClosedContiguousFrequentPatterns← FrequentCandidates – nonClosed
36: return ClosedFrequentCandidates
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(Algorithm 8, lines 16-25), extracted pairs of candidate patterns and indexes are sorted
and grouped by patterns where multiple indexes of a unique pattern are temporarily
stored in a list. The length of the list is then computed to obtain the absolute support
of each candidate pattern without re-scanning a given set of sequences. The obtained
absolute support is used to test each pattern frequency and only those pairs that are
frequent are retained. From Algorithm 8 (lines 26- 36), the closed contiguous patterns
are discovered from the frequent contiguous patterns and returned.

4.1.6 LCCspm Complexity Analysis

The LCCspm algorithm running time is mostly spent on checking for support. Before
support pruning, the algorithm spends meagre time splitting and storing snippets from
sequences. However, the time spent for snippet splitting and checking (i.e., candidate
generation) for duplicates is greatly reduced due to implemented dictionary structure
for storing the snippet. The support pruning process computes support for each candi-
date pattern. For each candidate, it scans the database to compute its absolute support.
Both the candidate generation and pruning processes run at O(n) complexity where
n is the length of the sequences database during candidate generation and the total
number of candidate patterns during the support pruning stage.

LCCspm technique for finding all closed contiguous patterns from a dictionary of
contiguous patterns is linearly scalable at the complexity of

O(n ∗ d2)

In order to identify closed contiguous patterns among the frequent contiguous patterns,
LCCspm was designed and developed to avoid a function in a quadratic order by hav-
ing one outer loop that runs at O(n) times and two inner loops running at O(d2) com-
plexity where n is the length of frequent dictionary that stored the frequent contiguous
pattern and d is the length of each pattern whose sub-patterns are extracted.

In other words, the LCCspm algorithm (Algorithm 6) for identifying closed con-
tiguous patterns runs at O(n) with a scale factor of the function d2. And in each of the
three steps of LCCspm, the LCCspm computational complexity maintains a O(n)

complexity.

86



4.2 Evaluating LCCspm Algorithm (Memory-Optimised)

4.2 Evaluating LCCspm Algorithm (Memory-Optimised)

This section contains the datasets, experiment settings, results and discussion of eval-
uating the LCCspm algorithm (memory-optimised) algorithm.

4.2.1 Datasets and Experimental Setting

This comparative analysis considered two real-time case studies of rugby league play-
ers’ movements and one real-time study of international football players’ match events
to compare the performances of LCCspm and CCSpan.

For the first case study of rugby league players’ movement pattern extraction, the
SMP framework method (discussed in Section 3.1.2) for processing GPS data into
discrete movement sequences were utilized. GPS data of thirty-three Super League
players that participated in a single Rugby Football League (RFL) match was processed
into movement sequences. The elite players played for Salford Red Devils and Winger
Warriors during the 2019 season. A set of discrete movement sequences was generated
from the GPS data. This set of sequences is referred to as “Small sequential player
movements data”. The second case study of rugby league players’ movement pattern
extraction involved the processing of a total of eighty-seven Super League players that
participated in five RFL matches. These elite players participated in the Castleford
Tigers vs. Warrington wolves, Salford red devils vs. Wigan warriors, Salford red
devils vs. Castleford tigers, St. Helens vs. Wigan warriors and St. Helens vs. Salford
red devils match games. This set of sequences data is referred to as “Large sequential
player movements data”. Both data were developed to test the algorithms’ performance
on both small and large volumes of sequences.

For the case study of international football players’ match event extraction, the
men’s FIFA 2018 world cup match event data was assessed and utilised. The men’s
FIFA 2018 world cup was coded and publicly made available by StatsBomb (Sta).
Match events comprise technical and tactical events that occurred during matches or
training, they are video-sourced and usually coded by experts. The data contained 64
matches and specifies events types, teams, players, shots, possession, play pattern and
timestamp. This data was specially developed to test the algorithms’ scalability on
lengthy sequences.
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Table 4.2: FIFA 2018 Match Event Dictionary (Adeyemo, 2023)

Match Event Type Code
Starting XI a
Half Start b
Pass c
Ball Receipt* d
Carry e
Pressure f
Duel g
Shot h
Goal Keeper i
Camera On j
Miscontrol k
Ball Recovery l
Clearance m
Block n
Foul Committed o
Foul Won p
Camera off q
Dribble r
Dispossessed s
Dribbled Past t
Interception u
50/50 v
Injury Stoppage w
Player Off x
Referee Ball-Drop y
Player On z
Half End A
Substitution B
Shield C
Error D
Offside E
Tactical Shift F

Each unique match event type was encoded as an alphabetical character (See Ta-
ble 4.2) and was processed sequentially based on the timestamp. Each match was
encoded into one sequence. Thus, the set of match events sequences contained 64 se-
quences of encoded match event types. This set of match event sequences is referred
to as “FIFA match event data”. The average length of the sequences is 3,561 and the
maximum length is 5,026.

These sets of sequences (i.e., both small and large sequential player movement data
and the FIFA match event data) were analysed to conduct the comparative analysis ex-
periments between the LCCspm and CCSpan sequential pattern mining algorithms
for discovering closed contiguous patterns. Comprehensive performance experiments
were conducted, by using various relative support thresholds (e.g., 25%, 50%, and
75%), to evaluate both algorithms. The runtime and memory consumed as well as
the total number of closed contiguous patterns found by both LCCspm and CCSpan
were obtained for performance evaluation per experiment. The performance of LCC-
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spm was assessed in terms of execution runtime and memory consumption (Zhang
et al., 2015). The runtime was measured in seconds and the memory consumption
was measured in megabytes. Likewise, the performance of the CCSpan algorithm was
also measured using the same metrics. Lastly, the resulting frequent closed contigu-
ous subsequences using both algorithms were cross-examined for similarity and or
discrepancy.

Afterwards, the performance of the LCCspm (Time-Optimised) algorithm was
evaluated and compared against the state-of-the-art closed contiguous pattern mining
algorithm - CCSpan and the LCCspm (Memory-Optimised) algorithm. The algorithms
were applied to the large sequential data containing 38,366 movement sequences of
rugby league players to extract frequent movement patterns. Again, the performance of
the algorithms for frequent movement pattern extraction was based on 5%, 25%, 50%
and 75% relative support thresholds. The length of obtainable movement patterns var-
ied from one-length movement patterns to maximal-length movement patterns. These
comparative analysis experiments were carried out on an Intel(R) Corei5 @ 1.60GHz
with 8GB (7.87GB usable) of RAM, running a Windows 10 Education (64-bit) oper-
ating system.

4.2.2 Results and Discussion

The results of the LCCspm algorithm on both small and large sequential player move-
ment data and men’s FIFA 2018 match event sequence data are presented and dis-
cussed.

4.2.2.1 Small Sequential Data

This data contained 7,818 sequences of movement units with an average length of 61.
Table 4.3 presents the lengths of discovered patterns per relative support threshold,
the runtime and memory consumed as well as the total number of closed contiguous
patterns found by both LCCspm and CCSpan. From Table 4.3, LCCspm results are
obtained following an incremental iteration (based on user-defined lengths) until the
maximal l value per relative support threshold. Whereas, the CCSpan algorithm only
produces a one-time result per relative support threshold.
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At a 5% relative support threshold, the state-of-the-art algorithm (CCSpan) algo-
rithm discovered six hundred and thirty-seven frequent closed contiguous patterns. On
the other hand, the LCCspm algorithm incremental discovered thirty-six 1fccp (i.e., 1-
length frequent closed contiguous patterns) within 0.48 seconds while consuming 31.7
megabytes of memory. When the l parameter was set to 4, the LCCspm discovered
four hundred and eighty-three 4fccp while it took 66.56 seconds and consumed 36.7
megabytes of memory. LCCspm also discovered six hundred and thirty-seven 7fccp,
when the parameter l was set to 7. The patterns and their count tallies with those dis-
covered by CCSpan. However, LCCspm discovered those 7fccp from the small player
movement data within 601.44 seconds of runtime and consumed 82.3 megabytes of
computer memory. Whereas, CCSpan consumed 263 megabytes of computer memory
and took 2,534 seconds of runtime.

When the relative support threshold was increased to 25%, the state-of-the-art al-
gorithm (CCSpan) algorithm discovered a one-time result of eighty frequent closed
contiguous patterns. When the LCCspm algorithm parameter l was set to 1 and the σ

parameter was set to 25%, seventeen 1fccp were discovered which took 0.18 seconds
and consumed 31.9 megabytes of computer memory. LCCspm discovered sixty-two
3fccp at 25% relative support. The analysis took 6.49 seconds and consumed 32.9
megabytes of computer memory. Eighty 5fccp were discovered at 25% relative sup-
port which took 78.26 seconds of runtime and 43.5 megabytes of computer memory.
Again, the patterns and pattern count discovered by both LCCspm and CCSpan are
tallied. However, it took the CCSpan algorithm 364.018 seconds of execution runtime
and 59 megabytes of memory to identify the same closed contiguous pattern under the
same parameter condition.

At 50% relative support, both algorithms discovered a maximum of 3-length fre-
quent closed contiguous patterns. Both LCCspm and CCSpan algorithms discovered
twenty-six 3fccp. It took CCSpan 26 seconds of runtime and 50 megabytes of computer
memory. Meanwhile, LCCspm discovered the same patterns within 5.63 seconds and
consumed only 32.7 megabytes of computer memory. Besides, LCCspm produced was
able to produce the same frequent closed contiguous patterns at lower lengths for lower
runtime and lesser memory consumption.
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Table 4.4: Small SDB Top-15 Patterns (l = 7, σ = 5%) (Adeyemo et al., 2021)

Encoded Support Decoded Movements

b 6746 WalkDecelerationAcute-Change

v 6700 JogAccelerationAcute-Change

u 6598 JogAccelerationStraight

j 6591 WalkAccelerationAcute-Change

uv 6155 JogAccelerationStraight, JogAccelerationAcute-Change

i 6139 WalkAccelerationStraight

vu 6105 JogAccelerationAcute-Change, JogAccelerationStraight

vv 6031 JogAccelerationAcute-Change, JogAccelerationAcute-Change

n 6008 JogDecelerationAcute-Change

a 5630 WalkDecelerationStraight

m 5539 JogDecelerationStraight

uu 5505 JogAccelerationStraight, JogAccelerationStraight

uvv 5169 JogAccelerationStraight, JogAccelerationAcute-Change, JogAccelerationAcute-Change

r 5081 JogNeutralAcute-Change

vvu 5051 JogAccelerationAcute-Change, JogAccelerationAcute-Change, JogAccelerationStraight

The 75% relative support was the highest support threshold set for the experiments
on the small player movement data. Nine 2fccp were discovered by both LCCspm and
CCSpan algorithms. CCSpan consumed 52 megabytes of computer memory and spent
2.25 seconds to discover those nine 2fccp. Besides the discovery of six 1fccp at 75%
with a shorter runtime and lesser compute, LCCspm also discovered those nine 2fccp

within 0.93 seconds of runtime and consumed 32 megabytes of computer memory.
Across the results per relative support thresholds, it is seen that the length of dis-

covered frequent patterns reduces as the value for support increases for both LCCspm
and CCSpan. This indicates that the higher the set support threshold, the lesser the
number of discoverable frequent closed contiguous patterns. This is in tandem with
studies (Fournier-Viger et al., 2017; Mabroukeh and Ezeife, 2010) that comparatively
evaluate pattern mining algorithms’ performances.

At the cross-examination of the performance results of LCCspm parameters l = 7, σ
= 5% with CCSpan, LCCspm is four times faster than CCSpan and it uses 69% lesser
memory as consumed by CCSpan. The cross-examination of the LCCspm perfor-
mance at l = 5 and σ = 25% against CCSpan revealed that LCCspm was approximately
five times faster than CCSpan while it uses about 26% lesser memory as consumed by
CCSpan. LCCspm performance at l = 3 and σ = 50% was approximately three time
faster than CCSpan while using about 35% lesser memory that was consumed by CC-
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Table 4.5: Small SDB Bottom-15 Patterns (l = 7, σ = 5%) (Adeyemo, 2023)

Encoded Support Decoded Movements

ijii 398 Walk Acceleration Straight, Walk Acceleration Acute-Change, Walk Acceleration Straight, Walk Acceleration Straight

nmnmn 397 Jog Deceleration Acute-Change, Jog Deceleration Straight, Jog Deceleration Acute-Change, Jog Deceleration Straight, Jog Deceleration Acute-Change

mp 397 Jog Deceleration Straight, Jog Deceleration Backwards

nnnno 395 Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Large-Change

oc 395 Jog Deceleration Large-Change, Walk Deceleration Large-Change

nmmmn 395 Jog Deceleration Acute-Change, Jog Deceleration Straight,Jog Deceleration Straight,Jog Deceleration Straight, Jog Deceleration Acute-Change

TSSS 394 Sprint Acceleration Acute-Change, Sprint Acceleration Straight, Sprint Acceleration Straight, Sprint Acceleration Straight

vuvw 393 Jog Acceleration Acute-Change, Jog Acceleration Straight, Jog Acceleration Acute-Change, Jog Acceleration Large-Change

ffi 393 Walk Neutral Acute-Change, Walk Neutral Acute-Change, Walk Acceleration Straight

rnnm 392 Jog Neutral Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Straight

mqr 392 Jog Deceleration Straight, Jog Neutral Straight, Jog Neutral Acute-Change

fjf 392 Walk Neutral Acute-Change, Walk Acceleration Acute-Change, Walk Neutral Acute-Change

vwu 392 Jog Acceleration Acute-Change, Jog Acceleration Large-Change, Jog Acceleration Straight

aef 391 Walk Deceleration Straight, Walk Neutral Straight, Walk Neutral Acute-Change

HHHG 391 Run Acceleration Acute-Change, Run Acceleration Acute-Change, Run Acceleration Acute-Change, Run Acceleration Straight

Span. Lastly, LCCspm performance at σ = 75% and l = 2 was at least two times faster
than CCSpan in runtime execution and used 38% lesser memory. Furthermore, the
performance results of lower iteration of LCCspm l values at 5%, 25%, 50% and 75%
relative support thresholds reveal that the algorithm developed in this PhD study is
consistent in its use of lesser memory and took shorter execution runtime.

The top-15 patterns found in the small player movement sequences data using the
LCCspm parameters l = 7, σ = 5% are presented in Table 4.4 alongside its frequency
and its decoded movements sequence. The top patterns comprise one-length frequent
closed contiguous patterns to three-length frequent closed contiguous patterns. The
most frequent two-length closed contiguous pattern is “uv” denoted as Jog Accelera-
tion Straight and Jog Acceleration Acute-Change. The pattern had an absolute support
of 6155 (i.e., it is contained in 6155 of 7,818 sequences of the small player move-
ment data). The topmost three-length pattern uvv had absolute support of 5169 se-
quences. This pattern is decoded as Jog AccelerationStraight and [Jog Acceleration
Acute-Change]x2 performed contiguously by RFL Super League players that partici-
pated in the match between Salford red devils and Winger warriors.

On the contrary, the least performed fifteen movement patterns found in the small
player movement sequences data using the LCCspm parameters l = 7, σ = 5% are pre-
sented in Table 4.5 alongside its frequency and its decoded movements sequence. This
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set of least performed movement patterns comprises two-length frequent closed con-
tiguous patterns to five-length frequent closed contiguous patterns. At the top of the list
(Table 4.5) is the four-length closed contiguous pattern ijii denoted as Walk Acceler-
ation Straight, Walk Acceleration Acute-Change and [Walk Acceleration Straight]x2.
The pattern had an absolute support of 398 (i.e., it is contained in 398 of 7,818 se-
quences of the small player movement data). Other interesting discovered movement
patterns include the three-length mqr pattern denoted as Jog Deceleration Straight, Jog
Neutral Straight, Jog Neutral Acute-Change with an absolute support value of 392. A
four-length movement pattern TSSS denoted as Sprint Acceleration Acute-Change
and [Sprint Acceleration Straight]x3 is also an interesting pattern which had an abso-
lute support of 394. Another discovered movement pattern of interest is the HHHG

decoded as [Run Acceleration Acute-Change]x3 and Run Acceleration Straight which
had a 391 absolute support value. The five-length pattern nmnmn (Table 4.5) had
absolute support of 397 sequences. This pattern, decoded as [Jog Deceleration Acute-
Change and Jog Deceleration Straight]x2 and Jog Deceleration Acute-Change, was
performed contiguously by RFL Super League players that participated in the match
between Salford red devils and Winger warriors.

4.2.2.2 Large Sequential Data

This data contained 38,366 sequences of movement units with an average length of
71. Table 4.6 presents the lengths of discovered patterns per relative support threshold,
the runtime and memory consumed as well as the total number of closed contiguous
patterns found by both LCCspm and CCSpan. From Table 4.6, LCCspm results are
obtained following an incremental iteration (based on user-defined lengths) until the
maximum l value per relative support threshold. Once again, the CCSpan algorithm
only produces a one-time result per relative support threshold. At a 5% relative sup-
port threshold, the state-of-the-art algorithm (CCSpan) algorithm for mining closed
contiguous patterns could not analyse the large player movement sequential data, up-
holding its inability to scale well (Abboud et al., 2017; Bermingham and Lee, 2020)
on a large set of sequences. LCCspm discovered seven hundred and eighty-three 7fccp,
when the parameter l was set to 7 at an execution runtime of 5,399 seconds and con-
sumed 161.5 megabytes of used computer memory.
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Table 4.7: Large SDB Top-15 Patterns (l = 7, σ = 5%) (Adeyemo et al., 2021)

Encoded Support Decoded Movements

b 33713 WalkDecelerationAcute-Change

i 32596 WalkAccelerationStraight

j 32561 WalkAccelerationAcute-Change

v 32484 JogAccelerationAcute-Change

u 32315 JogAccelerationStraight

uv 30561 JogAccelerationStraight, JogAccelerationAcute-Change

vu 30494 JogAccelerationAcute-Change, JogAccelerationStraight

n 29926 JogDecelerationAcute-Change

a 29190 WalkDecelerationStraight

uu 28823 JogAccelerationStraight, JogAccelerationStraight

vv 28408 JogAccelerationAcute-Change, JogAccelerationAcute-Change

m 28259 JogDecelerationStraight

uuv 26258 JogAccelerationStraight, JogAccelerationStraight, JogAccelerationAcute-Change

vuu 26073 JogAccelerationAcute-Change, JogAccelerationStraight, JogAccelerationStraight

nn 25312 JogDecelerationAcute-Change, JogDecelerationAcute-Change

At a 25% relative support, the CCSpan algorithm produced a one-time result that
discovered one hundred and two closed contiguous patterns. The LCCspm algorithm
discovered fifty 2fccp which took 7.73 seconds and consumed 36.7 megabytes of com-
puter memory when its parameter l was set to 1 and the σ parameter was set to 25%
relative support. LCCspm also discovered ninety-three 4fccp at 25% relative support.
The analysis took 252.33 seconds and consumed 41.7 megabytes of computer mem-
ory. A one hundred and two 5fccp were discovered at 25% relative support which took
852.28 seconds of runtime and 62 megabytes of computer memory. However, with the
same relative support threshold of 25%, the state-of-the-art algorithm (i.e., CCSpan)
same set of frequent closed contiguous patterns but took 2,902.39 seconds of execution
runtime and 96 megabytes of computer memory.

At 50% relative support, both algorithms discovered a maximum of 4-length fre-
quent closed contiguous patterns (i.e., 4fccp). Both LCCspm and CCSpan algorithms
discovered thirty-two 4fccp. It took CCSpan 544.31 seconds of execution runtime
and 91 megabytes of computer memory. Meanwhile, LCCspm discovered the same
patterns at 258.70 seconds and consumed only 40.8 megabytes of computer mem-
ory. LCCspm was again able to produce frequent closed contiguous patterns at lower
lengths for lower runtime and lesser memory consumption. For example, LCCspm
with parameters set at l = 2 and σ = 50% relative support, discovered twenty-three
2fccp at 5.13 seconds and for 35.7 megabytes of computer memory.
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Table 4.8: Large SDB Bottom-15 Patterns (l = 7, σ = 5%) (Adeyemo, 2023)

Encoded Support Decoded Movements

naa 1964 Jog Deceleration Acute-Change, Walk Deceleration Straight, Walk Deceleration Straight

uvvvuuu 1963 Jog Acceleration Straight, Jog Acceleration Acute-Change, Jog Acceleration Acute-Change, Jog Acceleration Acute-Change, Jog Acceleration Straight, Jog Acceleration Straight, Jog Acceleration Straight

nnnmmn 1961 Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Straight, Jog Deceleration Straight, Jog Deceleration Acute-Change

nnmmnn 1956 Jog Deceleration Acute-Change, Jog Deceleration Acute-Change, Jog Deceleration Straight, Jog Deceleration Straight, Jog Deceleration Acute-Change, Jog Deceleration Acute-Change

eeeeefe 1956 Walk Neutral Straight, Walk Neutral Straight, Walk Neutral Straight,Walk Neutral Straight, Walk Neutral Straight, Walk Neutral Acute-Change, Walk Neutral Straight

qmq 1955 Jog Neutral Straight, Jog Deceleration Straight, Jog Neutral Straight,

uvuvvuu 1954 Jog Acceleration Straight, Jog Acceleration Acute-Change, Jog Acceleration Straight, Jog Acceleration Acute-Change, Jog Acceleration Acute-Change, Jog Acceleration Straight, Jog Acceleration Straight

bd 1954 Walk Deceleration Acute-Change, Walk Deceleration Backwards

fffeee 1951 Walk Neutral Acute-Change, Walk Neutral Acute-Change, Walk Neutral Acute-Change, Walk Neutral Straight, Walk Neutral Straight, Walk Neutral Straight

fjf 1933 Walk Neutral Acute-Change, Walk Acceleration Acute-Change, Walk Neutral Acute-Change

CD 1929 Run Neutral Straight, Run Neutral Acute-Change

HGGH 1928 Run Acceleration Acute-Change, Run Acceleration Straight, Run Acceleration Straight Run Acceleration Acute-Change

qrqr 1927 Jog Neutral Straight, Jog Neutral Acute-Change, Jog Neutral Straight, Jog Neutral Acute-Change

rvq 1925 Jog Neutral Acute-Change, Jog Acceleration Acute-Change, Jog Neutral Straight

iiee 1922 Walk Acceleration Straight, Walk Acceleration Straight, Walk Neutral Straight, Walk Neutral Straight

The 75% relative support was also the highest support threshold set for the experi-
ments on the large player movement data. Ten 2fccp were discovered by both LCCspm
and CCSpan algorithms. CCSpan used 82 megabytes of computer memory and spent
38.38 seconds to discover those ten 2fccp. Besides the discovery of seven 1fccp at 75%
with a shorter runtime and lesser compute, LCCspm also discovered those ten 2fccp at
5.48 seconds of execution runtime and 35.7 megabytes of computer memory.

Across the results per relative support thresholds, the length of discovered frequent
patterns is seen to reduce as the value for support increases for both LCCspm and
CCSpan. This also reinforces that, the higher the set support threshold, the lesser the
number of discoverable frequent closed contiguous patterns. From the analysis re-
sults of the large player movement data for both algorithms, the performance results
of LCCspm parameters l = 2, σ = 75% with CCSpan revealed LCCspm is seven times
faster than CCSpan and it uses only 44% of the total memory consumed by CCSpan.
LCCspm performance at l = 4 and σ = 50% was approximately two time faster than
CCSpan while it used about 45% of the total memory used by CCSpan. Lastly, LCC-
spm performance at σ = 25% and l = 5 was at least three times faster than CCSpan in
runtime execution and used 64% f the total memory used by CCSpan. Also, the results
of lower iteration of LCCspm l values are consistently lower than higher values (See
Table 4.6).

Having cross-examined the outputted patterns from both algorithms and found
them matching, Table 4.7 reveals the top 15 patterns found in the large SDB based on
parameters l = 7, σ = 5%, its frequency and its decoded movements. The top-15 move-
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ment patterns comprise one-length frequent closed contiguous patterns to three-length
frequent closed contiguous patterns. The most frequent two-length closed contigu-
ous pattern is “uv” denoted as Jog Acceleration Straight and Jog Acceleration Acute-
Change. The pattern had an absolute support of 6155 (i.e., it is contained in 33,713 of
38,366 sequences of the large player movement data). The topmost three-length pattern
“uuv” had an absolute support of 26,258 sequences. This pattern is decoded as [Jog
Acceleration Straight]x2 and Jog Acceleration Acute-Change performed contiguously
by RFL Super League players in five matches.

The bottom-15 movement patterns that were discovered from the large player move-
ment data comprise two-length frequent closed contiguous patterns to seven-length
patterns (Table 4.8). At the top of the list in Table 4.8 is the three-length closed con-
tiguous pattern naa denoted as Jog Deceleration Acute-Change, [Walk Deceleration
Straight]x2. The pattern had absolute support of 1,964 (i.e., it is contained in 1,964
of 38,366 sequences of the large player movement data). Other discovered interest-
ing movement patterns include the three-length qmq pattern denoted as Jog Neutral
Straight, Jog Deceleration Straight, and Jog Neutral Straight with an absolute support
value of 1,955. A six-length movement pattern nnmmnn denoted as [Jog Deceler-
ation Acute-Change]x2, [Jog Deceleration Straight]x2 and [Jog Deceleration Acute-
Change]x2 is also an interesting pattern which had absolute support of 1,956. Another
discovered movement pattern of interest is the uvuvvuu decoded as [Jog Accelera-
tion Straight and Jog Acceleration Acute-Change]x2, Jog Acceleration Acute-Change
and [og Acceleration Straight]x2 which had a 1,954 absolute support value. The four-
length pattern HGGH (Table 4.8) had absolute support of 397 sequences. This pat-
tern, decoded as Run Acceleration Acute-Change, [Run Acceleration Straight]x2 and
Run Acceleration Acute-Change, was performed contiguously by RFL Super League
players that participated in the selected five match games.

Again, the performance results of lower iteration of LCCspm l values at 5%, 25%,
50% and 75% relative support thresholds reveal that the algorithm developed in this
thesis is consistent in its use of lesser memory and took shorter execution runtime.
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4.2.2.3 Men’s FIFA 2018 World Cup Match-event Data

This data contained 64 sequences of encoded match events. The average length of the
sequences is 3,561 and the maximum length is 5,026. Table 4.9 presents the lengths of
discovered patterns per relative support threshold, the runtime and memory consumed
as well as the total number of closed contiguous patterns found by both LCCspm and
CCSpan. LCCspm results are obtained following an incremental iteration (based on
user-defined lengths) until the maximum l value per relative support threshold. Across
the relative support thresholds, the CCSpan algorithm only produces a one-time result
per relative support threshold.

From Table 4.9, the state-of-the-art algorithm (i.e., CCSpan) could not analyse the
set of sequences for support threshold lower or equal to 25% when tested. This experi-
mental outcome further upholds CCSpan inability to scale properly even on a small set
of sequences with long sequences. On the contrary, at 25% relative support and l = 10,
the LCCspm algorithm discovered one thousand eight hundred and eighty-six 10fccp

(i.e., 10-length frequent closed contiguous patterns) after spending 124.95 seconds of
execution runtime. When the l parameter was set to 20, the LCCspm discovered three
thousand eight hundred and sixteen 20fccp and it took a runtime of 598.02 seconds.
LCCspm also discovered four thousand two hundred and forty-seven 40fccp, when the
parameter l was set to 40. LCCspm discovered those 40fccp from the men’s FIFA
2018 world cup match event set of sequences having an execution runtime of 1349.93
seconds when its parameter σ was set to 25% relative support.

At 50% relative support, both algorithms discovered a maximum of 29-length fre-
quent closed contiguous patterns (i.e., 29fccp). Both LCCspm and CCSpan algorithms
discovered one thousand and sixty-eight 29fccp. It took CCSpan 5446.81 seconds of
execution runtime and 134 megabytes of computer memory while LCCspm discovered
the same patterns at 563.77 seconds and consumed only 62 megabytes of computer
memory. LCCspm produced frequent closed contiguous patterns at lower lengths for
lower runtime and lesser memory consumption. For example, LCCspm parameters
set at l = 15 and σ = 50% relative support, discovered eight hundred and seventy-two
movement patterns at runtime of 190.87 seconds and for 62 megabytes of computer
memory. The 75% relative support was also the highest support threshold set for the
experiments on the men’s FIFA 2018 world cup match events data.
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4.2 Evaluating LCCspm Algorithm (Memory-Optimised)

A hundred and twenty 18fccp were discovered by both LCCspm and CCSpan algo-
rithms. CCSpan used 169 megabytes of computer memory and spent 650.23 seconds
to discover those 18fccp. Besides the discovery of sixty-nine 3fccp at 75% with a shorter
runtime and lesser compute, LCCspm also discovered those one hundred and thirty-
eight 9fccp at 32.98 seconds of execution runtime and 46.59 megabytes of computer
memory.

Across the results per relative support thresholds, the length of discovered frequent
patterns is seen to reduce as the value for support increases for both LCCspm and CC-
Span. At 25% relative support, the maximum length of an extracted frequent closed
contiguous match event patterns contained forty match events. When the relative sup-
port was set to 50%, the maximum length of an extracted frequent closed contigu-
ous match event patterns contained twenty-nine match events. Last, at 75% relative
support, the maximum length of an extracted frequent closed contiguous match event
patterns contained nine match events.

After cross-examining the performance results of LCCspm parameters l = 29, σ
= 50% with CCSpan, LCCspm is approximately ten times faster than CCSpan and it
used about 46% of the total memory consumed by CCSpan. The evaluation of the
performance of the algorithms at 75% relative support (with LCCspm l parameter set
to 9) revealed that LCCspm is approximately 20 times faster than CCSpan while it
used about 28% of the total memory consumed by CCSpan. Yet again, the results of
lower iteration of LCCspm l values are consistently lower than its higher values (See
Table 4.9).

Having cross-examined the outputted patterns from both algorithms, LCCspm and
CCSpan produced the same patterns. Table 4.10 reveals the top 15 patterns found in the
men’s FIFA 2018 World Cup data based on parameters l = 29, σ = 50%, its frequency
and its decoded movements. The discovered top-15 match event patterns are two to
four-length patterns. The match event pattern fcde is one of the many interesting
4-length frequent closed contiguous patterns that was discovered. It is decoded as
Pressure, Pass, Ball Receipt*, Carry. fcde was performed in 60 of 64 matches of the
2018 World Cup tournament.

Two of the top 15 discovered patterns (i.e., dc and cc) that were performed in
all matches World Cup (i.e., 64) are two-length patterns. Interestingly, longer match
events were discovered by both algorithms. The bottom-15 patterns at 50% relative
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4.3 Evaluating LCCspm Algorithm (Time-Optimised)

Table 4.10: Men’s FIFA 2018 World Cup Top-15 Patterns (l = 29, σ = 50%) (Adeyemo
et al., 2021)

Encoded Support Decoded

dc 64 Ball Receipt*, Pass

cc 64 Pass, Pass

fc 63 Pressure, Pass

ec 63 Carry, Pass

cde 63 Pass, Ball Receipt*, Carry

fcd 62 Pressure, Pass, Ball Receipt*

ecd 62 Carry, Pass, Ball Receipt*

dec 62 Ball Receipt*, Carry, Pass

dcd 62 Ball Receipt*, Pass, Ball Receipt*

ccd 62 Pass, Pass, Ball Receipt*

cdec 61 Pass, Ball Receipt*, Carry, Pass

fcde 60 Pressure, Pass, Ball Receipt*, Carry

ecde 60 Carry, Pass, Ball Receipt*, Carry

dcde 60 Ball Receipt*, Pass, Ball Receipt*, Carry

ccde 60 Pass, Pass, Ball Receipt*, Carry

support comprise two to twenty-one discovered match events (Table 4.11). The dis-
covered match event pattern (containing the most number of match events) on the list is
ecdefcdecdecdecdecdec (See Table 4.11 for decoded closed contiguous match events)
which was performed in 32 of the 64 World Cup matches. Two short patterns were
also on the list, namely: co (denoted as Pass, Foul Committed) and fp (denoted as
Pressure, Foul Won). Both match events were also performed in 32 matches.

4.3 Evaluating LCCspm Algorithm (Time-Optimised)

This section contains the datasets, experiment settings, results and discussion of eval-
uating the LCCspm algorithm (time-optimised) algorithm.

4.3.1 Dataset and Experimental Settings

This comparative analysis considered the large sequential data of rugby league play-
ers’ movements (Section 4.2.1) to compare the performances of LCCspm (Memory-
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4.3 Evaluating LCCspm Algorithm (Time-Optimised)

Table 4.11: Men’s FIFA 2018 World Cup Bottom-15 Patterns (l = 29, σ = 50%)
(Adeyemo, 2023)

Encoded Support Decoded

cdecdecdecdecdecdecfde 32 Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*,
Carry, Pass, Ball Receipt*, Carry, Pass, Pressure, Ball Receipt*, Carry

cdecdecdecfdecdecdecd 32 Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Pressure, Ball Receipt*, Carry, Pass, Ball
Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*

co 32 Pass, Foul Committed

decdefcdecdecdefcde 32 Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pressure, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball
Receipt*, Carry, Pressure, Pass, Ball Receipt*, Carry,

cdecdcdecdecdecdecd 32 Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry,
Pass, Ball Receipt*, Carry, Pass, Ball Receipt*

pcdec 32 Foul Won, Pass, Ball Receipt*, Carry, Pass

dek 32 Ball Receipt*, Carry, Miscontrol

fcdecdecdcde 32 Pressure, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*,

ffcdecdec 32 Pressure, Pressure, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass

defcfdcd 32 Ball Receipt*, Carry, Pressure, Pass, Pressure, Ball Receipt*, Pass, Ball Receipt*

decdecdcfde 32 Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Pass, Pressure, Ball Receipt*, Carry

cdefcdecdecfdec 32 Pass, Ball Receipt*, Carry, Pressure, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Pressure, Ball Receipt*, Carry,
Pass

cdecfdecdecfd 32 Pass, Ball Receipt*, Carry, Pass, Pressure, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Pressure, Ball Receipt*

ecdefcdecdecdecdecdec 32 Carry, Pass, Ball Receipt*, Carry, Pressure, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry,
Pass, Ball Receipt*, Carry, Pass, Ball Receipt*, Carry, Pass

fp 32 Pressure, Foul Won

Optimised), CCSpan and LCCspm (Time-Optimised). The performance of the algo-
rithms for frequent movement pattern extraction was based on 5%, 25%, 50% and 75%
relative support thresholds.

4.3.2 Results and Discussion

The length of obtainable movement patterns varied from one-length movement pat-
terns to maximal-length movement patterns. From Table 4.12, both memory and time-
optimised LCCspm algorithms results are obtained following an incremental iteration
(based on user-defined lengths) until the maximum l value per relative support thresh-
old. The results of both memory-optimised LCCspm and CCSpan algorithms remain
the same from Section 4.2.2.2. Once again, the CCSpan algorithm only produces a
one-time result per relative support threshold. Meanwhile, both variants of the LCC-
spm algorithms provided results in each iteration.

At a 5% relative support threshold, the LCCspm (Time-Optimised) algorithm was
able to identify the same sets of frequent movement patterns as the LCCspm (Memory-
Optimised) variant, per varied l value. However, the memory consumed and execution
runtime for each iteration varied. For example, it took LCCspm (Memory-Optimised)

103



4.3 Evaluating LCCspm Algorithm (Time-Optimised)

12.52 seconds of execution runtime to discover the 152 2fccp movement patterns while
LCCspm (Time-Optimised) took only 7.86 seconds. LCCspm (Memory-Optimised)
discovered the 783 frequent 7fccp movement patterns following 5,399 seconds of ex-
ecution runtime while LCCspm (Time-Optimised) variant discovered the same set of
frequent movement patterns following 52.32 seconds. The LCCspm (Time-Optimised)
algorithm consumed more memory than the LCCspm (Memory-Optimised) algorithm,
e.g. LCCspm (Time-Optimised) consumed 1998 megabytes of computer memory to
discover frequent 7fccp movement patterns while the LCCspm (Memory-Optimised)
used 161 megabytes of computer memory.

At 25% relative support threshold, the LCCspm (Time-Optimised) algorithm iden-
tified the same sets of frequent movement patterns as the LCCspm (Memory-Optimised),
per varied l value. However, the memory consumed and execution runtime for each
iteration varied. For example, it took LCCspm (Memory-Optimised) 61.26 seconds of
execution runtime to discover the 72 3fccp movement patterns while LCCspm (Time-
Optimised) took only 12.54 seconds.

Also, LCCspm (Memory-Optimised) discovered the 102 frequent 5fccp movement
patterns following 852.28 seconds of execution runtime while its time-optimised vari-
ant discovered the same set of frequent movement patterns following only 29.04 sec-
onds. However, the LCCspm (Time-Optimised) consumed more memory than the
LCCspm (Memory-Optimised) algorithm, e.g. LCCspm (Time-Optimised) consumed
1277.1 megabytes of computer memory to discover frequent 5fccp movement patterns
while the memory-optimised approach used only 62 megabytes of computer memory.

Similarly, when the relative support threshold was set to 50%, the optimised variant
of the LCCspm algorithm took shorter execution runtime while consuming more com-
puter memory than the naive variant of the LCCspm algorithm. The optimised variant
of LCCspm algorithm was able to find all frequent closed contiguous movement pat-
terns following a single scan of the given set of sequences. It finds all those patterns
quicker than the naive LCCspm approach. This was possible through the implemen-
tation of a set of 2-tuples that stored generated candidate pattern and its index pair as
a form of vertical representation. This enables the quick count of candidate patterns’
support and test for frequency, unlike the naive LCCspm approach.
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4.4 Chapter Summary

However, it is limited because all possible candidate patterns must be generated to
enumerate all indexes for support counting. Overall, the LCCspm (Time-Optimised)
consumed more memory than the naive LCCspm because all possible candidate pat-
terns were generated via snippet growth from a given set of sequences, unlike the naive
LCCspm approach that limited candidate patterns generation to those that are poten-
tially frequent.

4.4 Chapter Summary

This chapter proposed and implemented a novel frequent closed contiguous sequential
pattern mining algorithm, LCCspm. LCCspm satisfied all four criteria for extract-
ing patterns for player movement profiling. LCCspm algorithm uses a dictionary data
structure for storing extracted patterns and support pairs. It uses a snippet-growth ap-
proach for candidate pattern generation. Also, it finds closed contiguous patterns from
frequent patterns by using novel inverse characteristic properties of closed contiguous
patterns.

Due to the potential limitation of LCCspm (Memory-Optimised), in terms of how
it counts support for each candidate pattern, a time-optimised LCCspm uses a vertical
representation of candidate patterns by pairing each generated candidate with its index
was developed. The unique indexes of each candidate pattern when grouped enable
quick computation of its support or frequency. The optimised version of LCCspm also
uses a set of 2-tuple data structure to store extracted patterns and support pairs.

This chapter also evaluates the performance of the proposed and implemented
LCCspm algorithms, through comparative analysis, with the existing state-of-the-art
algorithm for extracting closed contiguous patterns (i.e., CCSpan) and between them-
selves. Both algorithms were applied to two real-life use cases. The results show that
LCCspm (Memory-Optimised) not only provides results in shorter runtime but with a
lower compute as opposed CCspan. More so, the empirical results further showcased
the scalability prowess of LCCspm (Memory-Optimised) in both small and large sets
of sequence sizes. CCSpan was unable to analyse rugby league players’ large sequen-
tial data (i.e. five matches) using a low-value (i.e. 5%) support threshold.

The LCCspm (Time-Optimised) algorithm was able to identify user-defined lengths
of frequent closed contiguous patterns faster than the memory-optimised approach.

106



4.4 Chapter Summary

The LCCspm (Memory-Optimised) algorithm scans a given set of sequences first for
candidate pattern generation and many times for counting support of each candidate
pattern. The LCCspm (Time-Optimised) algorithm scans a given set of sequences
only once to extract all frequent user-defined lengths of closed contiguous patterns.
It outperformed the memory-optimised approach of LCCspm (in terms of execution
runtime) by two orders of magnitude when low relative support and large user-defined
length parameters were set. However, it consumes more computer memory than the
naive approach.

Overall, LCCspm algorithms aimed to provide fast, scalable and reliable algo-
rithms to discover frequent player movement patterns that can further be utilised to
identify the unique/positional player movements, compare the teams on a competition
level or analyse the demand of matches. Also, this chapter evaluates the performance
of both variants of the LCCspm algorithms and the results showcased the applicability
and scalability of both algorithms. In the next chapter, the LCCspm algorithm will
be validated for player movement profiling against the LCS algorithm within the SMP
framework (i.e. currently applied method in sports) as well as the AprioriClose algo-
rithm to investigate if the consecutive aspect of extracted movement pattern for player
movement profiling matters.
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Chapter 5
Comparison of LCCspm with Existing
Player Movement Profiling Frameworks

The previous chapter presented and evaluated the performance of the novel LCCspm
algorithm. This chapter focuses on the comparison of different types of movement
patterns and validates the best for player position profiling, based on the rationale
presented in Section 3.2. This chapter fulfils the third objective of this PhD study. The
results of this chapter are submitted for publication in the Plos One journal.

5.1 Experimental Method

The experimental framework depicted in Figure 5.1 illustrates an overview of data
collection, processing and analysis methods. The parameter settings of the selected
algorithms are presented and discussed in Section 5.1.2. The three-step method for
comparing the algorithm towards identifying and validating the best type of movement
patterns is presented and discussed in Section 5.1.3.

5.1.1 Data and Processing

An observational repeated measures design was used in which GPS data from 50 elite
male rugby league players who participated in 319 fixtures within the 2019 and 2020
seasons were considered. Two rugby league playing positions were selected hook-
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5.1 Experimental Method

Figure 5.1: Workflow for Identifying the best sets of Movement Patterns (Adeyemo
et al., 2023)
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5.1 Experimental Method

ers (n = 22) and wingers (n = 28). The method for generating movement sequences
from global positioning systems data as published by White et al. (2021) and dis-
cussed in Section 3.1.2 was followed to obtain sets of movement sequences. The data
of every player were extracted separately per match. We refer to this data granular-
ity as “player-per-fixture level”. A total of one thousand and thirty-six GPS data at
the player-per-fixture level was processed into sets of discrete movement sequences.
Movement patterns were extracted from each set of discrete movement sequences and
represented the frequent recurring movement patterns profiled for each player within
a match. The average number of sequences in each set of movement sequences is
approximately seven hundred and seventeen (i.e., 717.23). The sum of all discrete
movement sequences across all sets of movement sequences equals seven hundred and
forty-three thousand and fifty (i.e., 743,050).

5.1.2 Pattern Mining Algorithms and Parameter Settings

Applying these pattern mining algorithms (i.e., “LCCspm”, “LCS”, and “Apriori-
Close”) on the same sets of sequences to extract different sets of movement patterns
is the first step of the solution towards addressing the problem of identifying which
pattern mining algorithm discovers the best type of movement patterns to separate be-
tween groups of rugby league players. This step assists in identifying the various sets
of unique movement patterns (per pattern mining algorithm) that can be used as pre-
dictor variables towards developing input data for classification modelling.

LCCspm was used to extract sequential and consecutive movement patterns. LCS
algorithm of the existing “SMP” framework (White et al., 2021) for player move-
ment profiling, was used to extract sequential but non-consecutive movement patterns.
A-close or AprioriClose Pasquier et al. (1999) being a pattern mining algorithm for
extracting frequent closed itemset for association rules mining, was used to extract
non-sequential movement patterns. LCCspm has two parameters: support (determines
patterns’ frequency) and length (determines patterns’ maximal length). Apriori-Close
has one parameter: support (determines patterns’ frequency) LCS has no parameter.
The support parameter of both the LCCspm and Apriori close algorithms was set to
5% to extract a large number of frequent movement patterns because a high support
threshold will identify few frequent patterns (Fournier-Viger et al., 2017; Mabroukeh
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5.1 Experimental Method

and Ezeife, 2010) from the player’s discrete movement sequences (i.e., active periods
within a match). Additionally, 5% support was set because movement patterns with
support higher than 5% are extractable from the results obtained using 5% support and
made use of during analysis. However, high support value will identify few frequent
movement patterns but may discard other interesting or contributing lower-frequency
movement patterns. LCCspm length parameter was set to 20 (i.e. 2-second time frame
of rugby league period of play) to ensure more and longer patterns are extracted al-
though the maximum length of identified frequent closed contiguous movement pat-
terns (Chapter 4) is 7. Meanwhile, the movement patterns extracted by AprioriClose
and LCS algorithms were later filtered to exclude patterns containing more than 20
movement units. More so, the support and length parameter values are widely used
parameters (Abboud et al., 2017; Bunker et al., 2021; Mabroukeh and Ezeife, 2010)
for extracting large and longer length frequent patterns. Additionally, the unique move-
ment patterns extracted by each algorithm were identified by computing the union of
all extracted movement patterns. The unique movement patterns (per algorithm) were
subjected to further analysis (discussed in the section below) to identify and validate
the best pattern-mining algorithm for player movement profiling into playing positions.

5.1.3 Movement Pattern Validation

Three steps were taken to identify and thus validate the best pattern mining algorithm
to extract movement patterns for profiling rugby league players into playing positions.
First, similarity analysis of the different sets of unique movement patterns obtained per
pattern mining algorithm was considered. The analysis of overlap movement patterns
between pattern mining algorithms, positions and positions per algorithm was also
carried out. Lastly, the separation of hookers and wingers into playing positions based
on the different sets of extracted movement patterns was conducted and measured.

5.1.3.1 Jaccard Analysis

Jaccard similarity measure (Wang et al., 2019) enables exact matching of patterns be-
tween two sets and was used to quantify the similarity among the groups of extracted
patterns. Given two sets of movement patterns (i.e., A and B), the Jaccard similarity
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5.1 Experimental Method

index is computed as in Equation 5.1.

J(A,B) = |A ∩B|/|A ∪B| (5.1)

5.1.3.2 Overlap Movement Patterns

Overlap movement patterns between two sets of movement patterns were identified
using the exact matching method. Overlapping unique movement patterns between
pairs of pattern mining algorithms were identified. For each pair, the most frequent-50
and least frequent-50 extracted movement patterns of each pattern mining algorithm
were checked for overlapping and visualised. This was carried out to identify where
the overlapping movement patterns are located.

A further analysis was carried out on the identified overlapped movement patterns
to discover those patterns performed by players of each playing position. Also, the
overlapped movement patterns between playing positions per pattern mining algorithm
were explored.

5.1.3.3 Separation of Players into Hookers and Wingers

This is the third step to validate which pattern mining algorithm produced the best set
of movement patterns to separate RFL hookers and wingers. This step will assess and
measure the extent to which each set of unique movement patterns (per pattern mining
algorithm) can separate between rugby league hookers and wingers. The separation
of players into playing positions was achieved through Machine learning classification
modelling. The identification of the best set of movement patterns to separate RFL Su-
per League hookers and wingers is mainly based on the separation (i.e., classification)
accuracy.

Datasets for classification modelling were generated, where the unique set of move-
ment patterns derived from the profiled movement patterns extracted per pattern min-
ing algorithm were the predictor variables. The values of each observation are either
1 if players performed the unique movement patterns within fixtures or 0 if otherwise.
The values of the dependent variable are either hooker or winger depending on the
players’ playing position. Five machine-learning classification algorithms (discussed
in Section 3.2.2.1) representing five different types of learning techniques were se-
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Table 5.1: Classification Algorithms Parameter settings (Adeyemo et al., 2023)

Algorithms Parameters
Decision Tree default
Gaussian Naı̈ve Bayes default
Random Forest random state = 1; others are default
Logistic Regression penalty = “l1”, solver = “liblinear”
MLP max iter = 300, random state = 5

lected for classification modelling. The classification algorithms were implemented in
the scikit-learn (version 1.1.3) python module (Pedregosa et al., 2011). The parameters
for fitting each classification algorithm are presented in Table 5.1.

The classification models were fitted via cross-validation technique (discussed in
Section 3.3.2.3) with the n splits parameter set to 10, random state parameter set
to 10 and the shuffle parameter set to “True”. The cross-validated models’ perfor-
mances were evaluated (discussed in Section 3.3.2.3) through aggregated accuracy,
precision, recall and f1-score metrics respectively. The performance scores of each
classification model were collected and presented.

5.1.3.4 Significant Movement Patterns for Hookers and Wingers Separation

The identification of significant predictor variables for classification modelling is cru-
cial (as discussed in Section 2.2.1). It will assist in the identification of important
movement patterns for separating rugby league players into hookers and wingers. At
the completion of classification modelling and performance evaluations, the classifier
with the most accurate models across the three types of extracted movement patterns
was further analysed for feature importance (discussed in Section 3.3.2.4) of movement
patterns per pattern mining framework. The feature importance score of each move-
ment pattern per cross-validated model was collected and aggregated to identify the
important movement patterns. This was done to identify top 20 important movement
patterns (per pattern mining algorithm) used for classification model development.

The dataset wherewith classification algorithms fitted their most accurate mod-
els was further analysed to identify key movement patterns necessary for classifi-
cation modelling. The filter feature subset-selection methods (discussed in Section
3.3.2.4) were applied to identify key movement patterns as predictor variables for re-
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classification modelling. To compare both filter feature subset-selection and search
methods, Correlation-based Subset Evaluator (discussed in Section 3.3.2.4) and Con-
sistency based Subset Evaluator methods (discussed in Section 3.3.2.4) were utilised
with both best first and genetic search methods. New data subsets were generated based
on the identified key movement patterns and used for classification re-modelling. The
performances of the classification models were re-evaluated.

The source code for computing the Jaccard similarity of unique movement patterns,
visualization of overlapped frequent patterns between the pattern mining algorithms
and playing positions, machine learning classification model development and evalua-
tion, and feature importance scores analyses are all available publicly and online in a
GitHub repository (Adeyemo, 2021b).

5.2 Results

The results of the validation analysis are presented in a step-wise manner. First, the
results of the extraction of movement patterns based on the three-pattern mining frame-
work as well as the similarity check and identification of overlapping patterns were pre-
sented. The extent of players’ separation into groups based on each type of extracted
movement pattern was measured and presented. The results of top movement pattern
importance scores (per pattern mining framework) were uncovered and presented. The
identification of key movement patterns and classification remodelling results are also
presented.

5.2.1 Jaccard Analysis

All one thousand and thirty-six sets of movement sequences contained a total of seven
hundred and forty-three thousand and fifty (i.e., 743,050) movement sequences. LCC-
spm algorithm extracted a unique set of three thousand eight hundred and eighty-one
(i.e., 3881) frequent closed contiguous movement patterns. The LCS algorithm (of the
“SMP” framework) extracted a unique set of two thousand five hundred and thirteen
(i.e., 2513) frequent longest common movement patterns. The AprioriClose algorithm
extracted a unique set of one hundred and fifty-five (i.e., 155) frequent closed (associ-
ation rules) movement patterns.
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Table 5.2: Similarity of Movement Patterns per Algorithm (Adeyemo et al., 2023)

Jaccard Similarity Score

Algorithms LCCspm LCS AprioriClose

LCC 1.0 0.19 0.008

SMP 0.19 1.0 0.009

APR 0.008 0.009 1.0

Table 5.2 reports the results of Jaccard similarity analysis to quantify the similarity
in the extracted unique sets of movement patterns between pattern mining algorithms.
Overall, Jaccard scores ranged from 0.008 to 0.19 suggesting limited similarity among
the movement patterns extracted by the three algorithms.

5.2.2 Overlapping Movement Patterns

5.2.2.1 Overlapping Movement Patterns Between Algorithms

LCCspm vs. LCS

One thousand and twenty-two (1022) unique movement patterns overlapped be-
tween LCCspm ( 26% of total) and LCS ( 40% of total) algorithms. In the most
frequent-50 extracted movement patterns for each pattern mining algorithm, thirty-two
movement patterns overlapped between LCCspm and LCS algorithms (64%) with no
overlap in the least-50 frequent movement patterns. Figure 5.2 highlights the visuali-
sation of the overlapped movement patterns based on the frequency count of LCCspm
algorithm between LCCspm and LCS algorithms.

These overlapped patterns are tabulated in Table 5.3 alongside the corresponding
overall absolute support values (i.e., for all sets of movement sequences) of both pat-
tern mining frameworks respectively. The overall absolute support was computed by
adding all the resulting absolute support of each frequent movement pattern as ex-
tracted per pattern mining framework across the one thousand and thirty-six sets of
movement sequences. From Table 5.3, the patterns “uv” denoted (using Table 3.2)
as jog acceleration straight and jog acceleration acute-change (with an LCCspm ab-
solute support of 224,742 and LCS absolute support of 161,353), “uuv” denoted as
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jog acceleration straight, jog acceleration straight and jog acceleration acute-change
(with an LCCspm absolute support of 191,260 and LCS absolute support of 143,918),
“ji” denoted as walk acceleration acute-change and walk acceleration straight (with an
LCCspm absolute support of 221,307 and LCS absolute support of 170,751), and “eef”
denoted as walk neutral straight, walk neutral straight and walk neutral acute-change
(with an LCCspm absolute support of 129,526 and LCS absolute support of 31,236)
were among the extracted most frequent on-field activities that overlapped between the
LCCspm and LCS patterns. The results of the overall absolute support of the move-
ment patterns that overlapped between the identified LCCspm and LCS movement
patterns revealed that those top movement patterns are more identified as closed con-
tiguous movement patterns than the longest common movement patterns. There was
no overlapped pattern between the least frequent 50 patterns of both LCCspm and LCS
pattern mining frameworks.

LCCspm vs. AprioriClose

Thirty-two (32) movement patterns overlapped between the unique sets of move-
ment patterns identified by LCCspm (0.83% of total) and AprioriClose ( 20.65% of
total) algorithms. In the most frequent-50 extracted movement patterns for each pat-
tern mining algorithm, three movement patterns overlapped between AprioriClose and
LCCspm algorithms while there was no overlap in patterns between the least frequent-
50 frequent movement patterns. Figure 5.3 highlights the visualisation of the over-
lapped movement patterns based on the frequency count of AprioriClose algorithm.
The movement pattern “uv” denoted (using Table 3.2) as jog acceleration straight and

Figure 5.2: Overlapped movement patterns between the most frequent-50 LCCspm
and LCS patterns (Adeyemo et al., 2023)
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Table 5.3: Overlapped patterns and support values between Top-50 LCCspm and LCS
Frameworks (Adeyemo, 2023)

Sequences LCCspm Absolute Support LCS Absolute Support
uv 224,742 161,353
vu 223,879 170,751
ji 221,307 5,572
uu 212,727 60,562
ef 209,012 81,361
fe 204,828 32,067
vv 203,470 23,461
ee 197,139 32,695
ff 195,164 22,691
uuv 191,260 143,918
vuu 190,010 72,909
uvv 175,771 29,161
vvu 172,223 40,578
uuu 171,704 33,777
uvu 165,958 7,504
ab 152,905 6,477
vuuu 148,755 37,045
uuuv 148,571 34,068
vuv 145,079 11,625
mnn 132,013 11,543
uuuu 130,326 19,256
eef 129,526 31,236
uuvu 126,671 17,182
uvuu 125,477 19,709
fee 123,648 6,503
uuvv 122,463 24,942
vvuu 122,127 10,303
eee 121,348 13,184
ffe 113,588 16,971
efe 111,994 16,424
uvvu 109,374 63,49
vuuuu 108,694 17,293

jog acceleration with acute-change of direction is the most frequent. The movement
pattern “ij” (walk acceleration straight and walk acceleration with acute-change of

117



5.2 Results

direction) had a “LCCspm” absolute support of 219,190 and “AprioriClose” absolute
support of 138,576. The movement pattern “ef” (walk neutral straight and walk neutral

Figure 5.3: Overlapped movement patterns between the most frequent-50 Apriori-
Close and LCCspm patterns (Adeyemo et al., 2023)

acute-change) had a “LCCspm” absolute support of 209,012 and “AprioriClose” abso-
lute support of 28,690. The results of the overall absolute support of the overlapped
movement patterns between the “LCCspm” and “AprioriClose” movement patterns
indicated that those top overlapped movement patterns are more identified as closed
contiguous movement patterns than closed association rules movement patterns.

LCS vs. AprioriClose

Twenty-five movement patterns overlapped between the LCS (1% of total) and Apri-
oriClose (16.13% of total) algorithms. In the most frequent-50 extracted movement
patterns for each pattern mining algorithm, 3 movement patterns overlapped between
LCS and AprioriClose algorithms while there were no overlapped patterns between
the least 50 frequent movement patterns. Fig 5.4 highlights the visualisation of the
overlapped movement patterns based on the frequency count of LCS algorithm. The
movement pattern “ef” (walk neutral straight and walk neutral with acute-change of
direction) was the second most frequent overlapping pattern (Fig 5.4). The movement
pattern “uv” denoted (using Table 3.2) as jog acceleration straight and jog acceleration
acute-change is the most frequent overlap movement pattern (with a “LCS” absolute
support of 161,353 and “AprioriClose” absolute support of 119,091). The movement
pattern “ef” denoted as walk neutral straight and walk neutral acute-change is the sec-
ond most frequent overlap pattern with a “LCS” absolute support of 81,361 and “Apri-
oriClose” absolute support of 28,690. Movement pattern “a” denoted as walk accel-
eration straight and walk acceleration acute-change (with a “LCS” absolute support
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Figure 5.4: Overlapped movement patterns between the most frequent-50 LCS and
AprioriClose patterns (Adeyemo et al., 2023)

of 16,143 and “AprioriClose” absolute support of 40,810) is the third most frequent
overlap movement pattern. The results of the overall absolute support of the over-
lapped movement patterns between the “LCS” and “AprioriClose” revealed that two
of the overlapped patterns are more identified as frequent longest common movement
patterns while one of the three overlapped movement pattern was more identified as
frequent closed association rules movement pattern.

5.2.2.2 Overlapped Frequent-50 Movement Patterns between Positions

The analysis of the overlapped movement patterns between the most frequent-50 fre-
quent LCCspm and LCS patterns (Fig 5.2) by playing positions revealed that hook-
ers performed twenty-nine (29) overlapped patterns (Fig 5.5a) and wingers performed
thirty-one (31) overlapped patterns (Fig 5.5b).

(a) Hookers (b) Wingers

Figure 5.5: Overlapped movement patterns between most frequent-50 LCCsmp and
LCS patterns per position (Adeyemo et al., 2023)

The movement patterns “ji” denoted as walk acceleration acute-change and walk
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acceleration straight and “fee” denoted as walk neutral acute-change and [walk neutral
straight] x 2 were mainly performed by wingers while movement patterns “uuuuv”
denoted as [jog acceleration straight] x 4 and jog acceleration acute-change, and “mn”
jog deceleration straight and jog deceleration acute-change were mainly performed by
hookers among other overlapped movement patterns.

All overlapped movement patterns (“ef, uv and ij”) between the most frequent-50
frequent LCCspm and AprioriClose patterns (Fig 5.3) were performed by hookers and
wingers. Similarly, both hookers and wingers performed the overlapped movement
patterns (“ef, uv and a”) between the most frequent-50 frequent movement patterns
extracted by LCS and AprioriClose algorithms (Fig 5.4).

5.2.2.3 Overlapped Movement Patterns between Positions per Algorithm

LCCspm

Two thousand two hundred and eighty-two (2,282) and three thousand one hundred
and seventy-four (3,174) sets of frequent closed contiguous movement patterns were
identified by LCCspm to profile hookers and wingers respectively. A total of one
hundred five hundred and seventy-five (1,575) movement patterns overlapped between
both playing positions (visualized in Figure 5.6) as extracted by LCCspm algorithm.
Also, LCCspm profiled seven hundred and seven (707) closed contiguous movement

(a) Based on Hookers’ Support Frequency (b) Based on Wingers’ Support Frequency

Figure 5.6: Overlapped movement patterns within positions as extracted by LCCspm
(Adeyemo et al., 2023)

patterns uniquely performed by hookers and another set of one thousand five hundred
and ninety-nine (1599) movement patterns performed only by wingers.
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LCS

One thousand five hundred and thirty-four (1,534) and one thousand six hundred and
thirty-two (1,632) sets of longest common movement patterns were identified by the
LCS algorithm of the “SMP” framework to profile hookers and wingers respectively.
A total of six hundred and fifty-three (653) overlapped movement patterns were iden-
tified between both hookers and wingers (visualized in Figure 5.7) as extracted by the
LCS algorithm. The LCS algorithm of the “SMP” framework profiled eight hundred

(a) Based on Hookers’ Support Frequency (b) Based on Wingers’ Support Frequency

Figure 5.7: Overlapped movement patterns within positions as extracted by LCS
(Adeyemo et al., 2023)

and eighteen (818) longest common movement patterns performed only by hookers
and another set of nine hundred and seventy-nine (979) movement patterns performed
only by wingers.

AprioriClose

One hundred and forty-two (142) and one hundred and thirty-six (136) sets of non-
sequential movement patterns were identified by the AprioriClose algorithm to profile
hookers and wingers respectively. A total of one hundred and twenty-three (123) over-
lapped movement patterns were identified between both hookers and wingers (visual-
ized in Figure 5.8) as extracted by the AprioriClose algorithm.

AprioriClose algorithm profiled a total of nineteen (19) non-sequential movement
patterns performed only by hookers and another set of thirteen (13) non-sequential
movement patterns performed only by wingers.
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(a) Based on Hookers’ Support Frequency (b) Based on Wingers’ Support Frequency

Figure 5.8: Overlapped movement patterns within positions as extracted by Apriori-
Close (Adeyemo et al., 2023)

5.2.3 Separation of Players into Hookers and Wingers

Rugby league players were classified into playing positions based on the set of unique
movement patterns across playing positions. The classification results for each set of
movement patterns were presented and the classification model with the most accurate
classification (across pattern mining algorithms) was further analysed for feature im-
portance. Furthermore, the results of identifying the key movement patterns from the
set of movement patterns with the best classification results are also presented.

5.2.3.1 Separation Analysis

Three datasets were generated for classification modelling. The first dataset (repre-
senting LCCspm algorithm) contained 3,881 predictor variables. The second dataset
(representing LCS algorithm) contained 2,849 predictor variables. The third dataset
(representing AprioriClose algorithm) contained 155 predictor variables. The distri-
bution of the target variables values labels were five hundred and thirty-six (i.e., 536)
wingers and five hundred (i.e., 500) hookers. The datasets are fairly balanced, in terms
of the number of observations per target variable value, for classification modelling.
The accuracy of the selected five (5) machine learning classification algorithms after
modelling on all three datasets are reported in Table 5.4.

A reduction in performances of all classification models on the “LCS” movement
patterns dataset was recorded when compared with their performances on the “LCC-
spm” movement patterns dataset. The Decision tree classification model on the “LCS”
movement patterns dataset had a 57.72% accuracy, f1-score of 0.57 and 0.58 precision
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and recall scores. This is more than a 20% decrease in classification accuracy when
compared to Decision tree performance on the “LCCspm” movement patterns dataset
despite “LCCspm” and “LCS” movement patterns being a consecutive type of move-
ment pattern. The best-performing classifier on “LCS” movement patterns dataset,
the Logistic Regression model, had 65.83% accuracy and 0.66 f1-score, precision and
recall scores respectively.

All classification models fitted on the “AprioriClose” movement patterns dataset
performed better than those fitted on the “LCS” movement patterns dataset despite hav-
ing a lower number of independent variables. The Decision tree classification model on
the “AprioriClose” movement patterns dataset had 73.56% accuracy, f1-score of 0.73
and 0.74 precision and recall scores respectively. This is approximately 18% increase
in classification accuracy when compared to Decision tree performance on the “LCS”
movement patterns tabular dataset but approximately 10% lowered accuracy in com-
parison to its performance on “LCCspm” movement patterns tabular dataset. Logistic
Regression model is again the best-performing classifier on “AprioriClose” movement
patterns dataset with 82.05% accuracy and 0.82 f1-score, precision and recall scores
respectively.

All classifiers fitted on the LCCspm dataset achieved the highest accuracies when
compared to their counterparts fitted on the LCS and AprioriClose datasets. The MLP
classifier fitted on the dataset having LCCspm movement patterns as its independent
variables had the highest individual accuracy of 91.02% among all other classifiers
fitted on any of the three datasets. MLP classifier achieved 61.78% and 80.9% accu-
racies on the LCS and AprioriClose datasets respectively. Meanwhile, the accuracy
of the Gaussian Naive Bayes classifiers is the lowest among other classification algo-
rithms, across all algorithms.

Consequently, the LCCspm algorithm used for mining closed contiguous move-
ment patterns provided the most separating players into playing positions based on
the classification models’ performances. The AprioriClose algorithm used for min-
ing closed itemsets movement patterns provided the second-best data-driven insights
(among three selected pattern mining algorithms) to separate players into playing po-
sitions. Meanwhile, the LCS algorithm of the “SMP” framework ranked provided the
least data-driven insights to separate players into playing positions.
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5.2.3.2 Significant Movement Patterns for the Separation

Feature Importance

From Table 5.4, the Logistic Regression algorithm fitted two of the three most ac-
curate classification models per pattern mining algorithm. It fitted the most accurate
classification models on the AprioriClose and LCS datasets, with accuracy of 82.95%
and 65.83% respectively. Meanwhile, it fitted the second-best accurate classification
model of 89.77% accuracy on the LCCspm dataset. As such, further analysis for the
top-20 feature importance scores of the movement patterns used by the Logistic regres-
sion models per pattern mining algorithm was conducted and reported in Table 5.5.
Feature Selection

All classification models fitted their most accurate model on the data with closed
contiguous movement patterns as predictor variables. Hence, key movement patterns
within the data were identified using the filter feature subset-selection methods (dis-
cussed in Section 3.3.2.4). The Correlation-based feature subset using the best first
search method identified 47 key closed contiguous movement patterns out of the orig-
inal 3881 movement patterns for hookers and wingers. This subset of 47 key closed
contiguous movement patterns had the highest score (0.381) out of all 196663 subsets.
The Correlation-based feature subset using the genetic search method identified 987
key closed contiguous movement patterns from the original 3881 movement patterns.
This subset of 987 key closed contiguous movement patterns had the highest score
(0.0129) out of all 20 subsets.

The Consistency-based feature subset using the best first search method identified
28 key closed contiguous movement patterns out of the original 3881 movement pat-
terns for hookers and wingers. This subset of 28 key closed contiguous movement
patterns had the highest score (0.998) out of all 127554 subsets. The Consistency-
based feature subset using the genetic search method identified 1414 key closed con-
tiguous movement patterns out of the original 3881 movement patterns for hookers
and wingers. This subset of 1414 key closed contiguous movement patterns had the
highest score (0.99903) out of all 20 subsets.
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5.3 Discussion

The MLP classifier fitted on the original closed contiguous dataset (3881 features)
achieved the highest accuracy of 91.02% with precision, recall, and F1-scores of 0.91
(Table 5.6). However, the logistic regression classifier fitted on the dataset with 47
features (identified by the correlation-based feature subset selection using the best first
search method) achieved an accuracy of 88.9% with F1-score, precision and recall
scores of 0.89 (Table 5.6). The classifiers produced the most stable performance on the
key 47 closed contiguous movement patterns by achieving an aggregated accuracy of
85.85% across classifiers (Table 5.6).

5.3 Discussion

This chapter’s objective of identifying the best type of movement patterns for profil-
ing player movement by comparing the proposed and developed algorithm with the
existing player movement profiling framework and AprioriClose algorithm was com-
pleted. The classification results of this study revealed the extent of separating players
into playing positions, based on each set of frequent movement patterns, extracted
from the same sets of movement sequences, under the same parameter condition. Ta-
ble 5.4 shows that the separation of elite rugby players into hooker and winger po-
sitions based on their frequent movement patterns is best done using their extracted
closed contiguous movement patterns profiled by the LCCspm algorithm. The LCC-
spm closed contiguous movement pattern using the Multi-Layered Perceptron classi-
fier performed best to classify hookers and wingers in professional rugby league, with
an overall accuracy of 91.02%. The AprioriClose closed itemsets (non-consecutive)
movement patterns offered a better separation accuracy than the longest common sub-
sequence movement patterns of the LCS algorithm. AprioriClose movement patterns
provided a decent separation (through Logistic Regression accuracy of 82.05%). Its
lowered accuracy can be attributed to the nature of its movement patterns being non-
consecutive, non-sequential and without repeated movement activity. Also, the results
of this study indicate player movement profiling using LCCspm will discover more
numbers of movement patterns for profiling players from the same sets of movement
sequences than AprioriClose and LCS algorithms. This implies there are more discov-
erable consecutive movement patterns than non-consecutive and non-sequential move-
ment patterns. More so, Jaccard similarity scores (1 being full similarity) ranged from

128



5.3 Discussion

0.008 to 0.19 among movement patterns algorithms (Table 5.2), suggesting a lack of
similarity in the extracted patterns overall. LCCspm and LCS sets of movement pat-
terns shared higher similarity because both algorithms extract some form of sequential
movement patterns as opposed to AprioriClose non-sequential patterns. Based on these
results, the set of movement patterns extracted by LCCspm is identified and validated
as the best for profiling movement patterns of rugby league players playing positions.

The application of LCCspm to profile the movement of hookers and wingers re-
vealed wingers performed 892 movement patterns more than hookers. This suggests
a more variable movement profile of wingers than hookers. There were overlapped
movement patterns between hookers and wingers (Fig 5.6), but the frequency at which
the movement patterns were performed differs by playing positions. Overlapped move-
ment patterns with a combination of movement units u, v which indicates accelerated
jogs with some acute change in direction or on straights were mostly performed by
hookers (Fig 5.6a). Wingers on the other hand performed overlapped movement pat-
terns that included accelerated walks with some acute direction changes as indicated
by movement units j and i (Fig 5.6b).

This study, through the application of LCCspm algorithm, also identified groups
of movement activities performed uniquely by hookers and wingers. For example,
the sequential movement pattern GGGGGGGGGGGGSSSSSSS (Run Acceleration
Straight [x12] and Sprint Acceleration Straight [x7]) was performed by hookers only.
Equally, only wingers completed the sequential movement pattern of “TSSTSTTSST”
(Sprint Acceleration Acute-change, Sprint Acceleration Straight [x2], Sprint Acceler-
ation Acute-change, Sprint Acceleration Straight, Sprint Acceleration Acute-change
[x2], Sprint Acceleration Straight [x2], Sprint Acceleration Acute-change). It is well
established that wingers complete greater high-speed (>5m.s−1) activity during matches
than hookers (wingers: 626m vs. hookers: 285m) (Dalton-Barron et al., 2020), al-
though these differences are less pronounced with global acceleration-based measures
(e.g., average acceleration over a period of time). These differences are likely due to
the vastly different tactical roles of wingers (e.g., returning kicks in attack leading to
open space to move at high speed) vs. hookers (e.g., repositioning behind the play the
ball to distribute possession). Applying pattern mining algorithms to uncover the se-
quential nature of the occurrences of activity can enable the better capability to classify
positional groups and aid in enhanced training specificity.
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5.4 Chapter Summary

It is also noteworthy to point out that the most important variables used by the
Logistic Regression classification model are mostly not part of the most frequent-50
overlapping patterns profiled by LCCspm. This indicates that the not-too-frequent
movement patterns and those uniquely performed by players of each playing position
provided insights into players’ playing position separation. The twenty most important
LCCspm movement patterns used for fitting the Logistic Regression classifier consist
of 2 to 6-length on-field movement activities (Table 5.5c). The second most impor-
tant variable “SS” (denoted as [sprint acceleration straight] x2) and ninth most impor-
tant variable “HH” (denoted as [run acceleration acute-change] x2) discovered by the
LCCspm pattern mining algorithm are the only patterns to include on-field activities
“S” and “H” in its set of most important movement patterns across all three pattern
mining algorithms. The nineteenth important movement pattern “fe” in Table 5.5c is
the only pattern present in the most frequent LCCspm and LCS overlapped movement
pattern in Fig 5.2). This further validates the LCCspm algorithm and closed contigu-
ous movement patterns as the best pattern to profile rugby league players into playing
positions.

There is a significant difference between the total number of key closed contigu-
ous movement patterns and the original closed contiguous movement patterns used at
predictor variables (Table 5.6). The correlation-based feature subset selection using
the best first search method identified forty-seven key movement patterns. This is ap-
proximately 1.2% of the original movement patterns in the dataset. Additionally, all
classifiers produced stable performances when fitted on the dataset with forty-seven
key movement patterns where it achieved a 3.84% increased accuracy compared to the
aggregated performance of classifiers on the 3881 closed contiguous movement pat-
terns. This establishes the usefulness of the correlation-based feature subset selection
technique (using the best first search method) as the feature selection algorithm for
finding key movement patterns.

5.4 Chapter Summary

The previous chapter evaluated the computational performance of LCCspm for pattern
extraction from team sports. This chapter presents experiments that validated the effec-
tiveness of LCCspm as an algorithm for player movement profiling and that movement
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5.4 Chapter Summary

patterns produced by LCCspm can be integrated into a framework for player position
separation. Through this chapter, this PhD study validates pattern mining algorithms
for movement pattern extraction and solved the problem of identifying the set of move-
ment patterns that best separates rugby league players into playing positions.

LCCspm and LCS algorithms extracted movement patterns that shared some form
of similarity while AprioriClose movement patterns shared no similarity because item-
sets do not consider the order of item appearance. Experiments on the use of pattern
mining algorithms to extract movement patterns for the separation of players into posi-
tions show that closed itemset movement patterns are better than the longest common
movement patterns, despite the large numbers of longest common movement patterns
extracted by LCS algorithm of the “SMP” framework and being a consecutive move-
ment pattern. Importantly, a set of closed contiguous movement patterns is best for
separating players into positions because all classification models were most accu-
rate on the dataset generated with LCCspm unique movement patterns as predictor
variables. Therefore, mining closed contiguous movement patterns for profiling the
on-field activities of players is recommended.

The identification of key movement patterns revealed that the correlation-based
feature subset selection technique using the best first search method identified a few
key movement patterns. These key movement patterns offered the highest aggre-
gated classification accuracy across five classification algorithms with different learn-
ing schemes. Thus, the correlation-based feature subset selection technique using the
best first search method is recommended for identifying key predictor variables with-
out users’ and classification algorithms’ bias.

Although closed contiguous patterns are now validated as the best type of move-
ment pattern to profile rugby league players into two distinct playing positions based
on known differences, there are other seven rugby league playing positions besides
hookers and wingers which should be explored. Additionally, the appropriate predic-
tor variables values for such classification modelling should be investigated. In this
chapter, only the presence or absence of the completed unique movement patterns per
fixture was considered. Other predictor variable values (i.e. the count or frequency
of completed unique movement patterns with respect to the total number of movement
sequences) may offer different results. These identified limitations are addressed in the
next chapter.
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Chapter 6
Applications of LCCspm Movement
Patterns in Rugby Football League

The previous chapter validated LCCspm algorithm the algorithm that produced the best
type of movement patterns for player movement profiling. This chapter presents three
applications (rationale discussed in Section 3.3) of the validated algorithm (i.e., LCC-
spm) for player movement profiling in Sections 6.2.1, 6.2.2 and 6.2.3. This chapter
fulfils the fourth objective of this PhD study. The results of this chapter are submitted
to the 10th Workshop on Machine Learning and Data Mining for Sports Analytics,
2023.

6.1 Experimental Method

The experimental framework depicted in Figure 6.1 illustrates an overview of data col-
lection, processing and analysis methods. This experimental method is broken down
into three subsections, besides the data and processing section. The method to identify
the signature movement patterns for each RFL playing position is discussed in Sec-
tion 6.1.2. The method to classify elite rugby football league players into nine player
positions is presented and discussed in Section 6.1.3 while the method for identifying
the key movement patterns for the same classification is presented and discussed in
subsection 6.1.3.1. The method for assessing players’ performance variability using
the sets of key movement patterns is presented and discussed in Section 6.1.4.
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6.1 Experimental Method

Figure 6.1: Workflow for RFL Players’ Position Profiling, Classification and Perfor-
mance Variability Assessment (Adeyemo, 2023)
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6.1 Experimental Method

6.1.1 Data and Processing

An observational repeated measures design was used in which 10Hz GPS data from
two hundred and seventeen (217) elite male Rugby Football League players that played
in fixed playing positions within the 2019 and 2020 seasons were collected via wear-
able sensors (Catapult S5, Catapult Innovations, Melbourne, Australia) worn during
matches. The distribution of the players across playing positions was thirty-one (31)
Centres, eight (8) Five-Eighths, twenty-two (22) Full-Backs, twenty-six (26) Half-
Backs, twenty-two (22) Hookers, eight (8) Loose-Forwards, forty-seven (47) Prop-
Forwards, twenty-five (25) Second-Rows and twenty-eight (28) wingers. Same as in
Section 5.1.1, movement sequences were generated from rugby league players’ GPS
data using the method discussed in Section 3.1.2. The GPS data of two hundred and
seventeen (217) elite male Rugby Football League players that participated in three
hundred and thirty-eight fixtures were collected. See Table 6.1 for the distribution of
players’ sets of movement sequences per fixture per playing position. In total, all par-
ticipants played in four hundred and fifty-four fixtures (match games) within the 2019
and 2020 seasons. The data of every player were extracted separately per match. We
refer to this data granularity as “player-per-fixture level”. A total of four thousand six
hundred and forty GPS data at the player-per-fixture level was processed into sets of
discrete movement sequences. Movement patterns were extracted from each set of dis-
crete movement sequences and represented the frequent recurring movement patterns
profiled for each player within a match.

6.1.2 Signature Movement Patterns of RFL players

LCCspm was applied to extract user-defined lengths of closed contiguous patterns from
the movement sequences to discover patterns for each playing position and for clas-
sification modelling. LCCspm was used to extract movement patterns whose length
does not exceed twenty (20) (i.e. 2-second time frame) and is at least five per cent (i.e.,
5%) relatively frequent from every four thousand six hundred and forty sets of move-
ment sequences. The unique set of movement patterns was derived from the extracted
movement patterns by finding the union of all extracted movement patterns.

For each playing position, a union of extracted movement patterns performed by
players within the playing position is identified. Afterwards, the unique set of move-
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6.1 Experimental Method

Table 6.1: Original and SMOTE Distribution of Players per Fixture per Playing Posi-
tion (Adeyemo, 2023)

Playing Positions Original observations Percentage Increase (%) SMOTE observations
Centres 779 - 779
Five-Eighths 188 275 705
Full-Backs 378 100 756
Half-Backs 619 15 711
Hookers 499 50 748
Loose-Forwards 230 220 736
Prop-Forwards 898 - 898
Secondrows 513 50 769
Wingers 536 35 723
Total Number 4640 6827

ment patterns performed only by players within the position (considered as the signa-
ture movement patterns) was identified and visualised. Also, across all playing posi-
tions, the unique set of movement patterns performed by all players was identified.

6.1.3 RFL Playing Position Classification using Movement Patterns

The unique set of movement patterns across all playing positions was used as predictor
variables to develop two tabular datasets. The two datasets differ from one another
due to the values of their predictor variables. The first dataset was populated with
“Binary” values while the second was populated with “Rel Freq” values or zeros. We
refer to both datasets as “original datasets”. The target variable values of the developed
datasets for classification modellings were all nine playing positions.

Due to the class imbalance problem found in both original datasets (Table 6.1), both
oversampling of minority playing positions and undersampling of majority playing
positions were considered in this study. The “SMOTE” method (discussed in Section
3.3.2.2) was applied to over-sample seven minority playing positions (See Table 6.1).
The generated dataset was referred to as “oversampled dataset”. Also, the “Random-
Under-Sampler” method (discussed in Section 3.3.2.2) was applied to under-sample
all playing position observations except the minority class (i.e., Five-Eighths).

For each input dataset (based on the predictor variables values), the total number
of observations for each playing position varied from original to over-sampled mi-

135



6.1 Experimental Method

nority playing positions and under-sampled majority playing positions. The original
datasets consist of four thousand six hundred and forty observations representing play-
ers’ movement sequences at player-per-fixture level. The over-sampled datasets con-
tained six thousand eight hundred and twenty-seven observations. The under-sampled
datasets contained one thousand six hundred and ninety-two observations. In total,
six datasets were developed as input for classification modelling. Three (i.e. original,
over-sampled and under-sampled) datasets with “Binary” predictor variables values
and the other three datasets were populated with zeros or “Rel Freq” values.

Classification models were fitted with the same algorithm as selected in section
5.1.3.3. Five machine learning classification algorithms (discussed in Section 3.2.2.1)
representing five different types of learning techniques were used to fit classification
models on both “Binary” and “Rel Freq” datasets. The selected machine learning algo-
rithms are Decision Tree, Gaussian Naive Bayes, Random Forest, Logistic Regression
and Multi-Layered Perceptron as they all fit distinct models. The classification algo-
rithms were implemented in the scikit-learn (version 1.1.3) python module (Pedregosa
et al., 2011). The parameters for fitting each classification algorithm are presented in
Table 5.1.

The classification models were fitted via cross-validation technique (discussed in
Section 3.3.2.3) with the n splits parameter set to 10, random state parameter set to
10 and the shuffle parameter set to “True”. The cross-validated models’ performances
were evaluated (discussed in Section 3.3.2.3) through aggregated accuracy, precision,
recall and f1-score metrics respectively. The performance scores of each classifica-
tion model were collected and presented. Classification models were developed and
evaluated on the six input datasets.

6.1.3.1 Key Movement Patterns for Classification

The input datasets used for the classification of elite Rugby Football League players
into the nine playing positions based on movement patterns suffer from high dimen-
sionality (i.e., a large number of predictor variables). Additionally, a large number
of identified movement patterns as predictor variables may contain correlated ones
as well as variables that do not offer quality information to classify observations of
rugby league players into correct target variable values. Given that the importance and
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6.1 Experimental Method

benefits of players’ playing position classification are the implementations of players’
positional profiling for talent identification and performance variability assessment,
the current feature space for the classification of players into playing positions is not
tenable.

The type of predictor variables values (i.e. “Binary” or “Rel Freq”) of the data
that offered the highest classification accuracy is considered the appropriate predictor
variables values. Hence, such data and its sampled variants are used for the analysis
to identify key movement patterns for classification and referred to as “main” datasets.
The top significant unique movement patterns as predictor variables that were impor-
tant for accurate classification modelling, as identified by classification model feature
importance technique, feature selection technique (discussed in Section 3.3.2.4) and
SHapley Additive exPlanation (SHAP) (discussed in Section 3.3.2.4), were used to
reduce the number of identified signature movement patterns.

Feature Selection: The identification of key movement patterns to classify elite
Rugby Football League Players into nine playing positions was carried out by applying
the filter-based feature subset selection techniques (discussed in section 3.3.2.4). The
correlation-based feature subset selection method and the consistency subset evaluator
method were implemented, both with the best first search method. Both feature selec-
tion techniques were selected because they output the best subset of features through
different mechanisms and without user bias.

The two feature selection techniques discussed in Section 3.3.2.4 (i.e., correlation-
based feature subset selection and consistency-based feature subset selection using the
best first search method) were applied to the “main” datasets to identify key movement
patterns. The identified key movement patterns were used to extract new data subsets
and refer to these new data subsets as key movement patterns datasets. The “main”
datasets and its two (2) key movement patterns datasets are used as input data to re-fit
classification models.

Classification models are re-fitted with the same algorithm as selected in Section
5.1.3.3 with the same parameter defined in Table 5.1 following the same procedure as
discussed in Section 3.3.2.3. The classification algorithms were implemented in the
sci-kit-learn (version 1.1.3) python module (Pedregosa et al., 2011). The performance
scores of each classification model were collected and presented. Also, the accuracy
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scores of classification models per feature selection method were aggregated to check
for stability and validate which feature selection method identified the key or a mini-
mum number of movement patterns across the selected classification algorithms.

Feature Importance and Contribution: Following the classification of players into
playing positions via five machine learning algorithms fitted on six different input
datasets, the model with the highest classification accuracy was further analysed. The
movement patterns that were most important to the most accurate classification model
were identified through the model’s feature importance technique.

The “kernelExplainer” SHAP values technique (discussed in Section 3.3.2.4) was
applied to identify the contribution of each unique movement pattern towards the clas-
sification of elite rugby league players into playing positions based on the most accu-
rate classification model. Given that the classification modelling of players into playing
positions will generate SHAP values of all observations for each playing position (i.e.
nine sets of SHAP values), the most significant movement patterns per playing position
were first identified. Afterwards, a matrix of SHAP values of all observations was gen-
erated by selecting each observation’s SHAP value within its playing position. With
the generated matrix, the top significant movement patterns across playing positions
were identified.

6.1.4 Assessment of Players’ Performance Variability

Rugby league players’ performance over two seasons (2019 and 2020) was assessed
based on a set of significant movement patterns across playing position levels. The
longitudinal performance variability of rugby league players was assessed using the
obtained set of identified significant movement patterns.

The set of unique movement patterns that were identified by the feature selec-
tion technique as key movement patterns and the other set that was identified by the
SHAP value feature contribution (discussed in Section 3.3.2.4) were cross-matched for
overlap. Each of the overlapped movement patterns (considered as “Movement Per-
formance Indicators”) was used to assess the performance variability of players across
playing positions. For each selected player, a matrix of a set of movement patterns
over fixtures was generated and populated by the relative frequency of each movement
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performance indicator if performed by the player during a specific match game. Per
movement pattern, the longitudinal performance variability of the selected player is
visualized for all participated match games.

6.2 Results and Discussion

Tables 3.2 contained pairs of movement units and characters that are useful to denote
the movement patterns extracted and presented.

6.2.1 Signature Movement Patterns of RFL Playing Positions

The total number of movement sequences across all four thousand six hundred and
forty sets of movement sequences is three million three hundred and forty thousand
two hundred and sixteen (3,340,216). The extraction of closed contiguous movement
patterns with a maximum length of two seconds (i.e., 20) and five per cent relative fre-
quency support threshold from the four thousand six hundred and forty sets of move-
ment sequences resulted in the discovery of various sizes of discovered movement
patterns per-player-per-fixture. Across all sets of movement sequences, the maximum
number of movement patterns extracted per player per fixture was one thousand five
hundred and eighty-six (1586) while the minimum number of extracted movement
patterns was three. A total of one million four hundred and ninety-two thousand and
twenty-five (1,492,025) movement patterns were extracted while the average number
of movement patterns extracted per set of movement sequences is three hundred and
twenty-one (321).

The identified and unique (i.e., signature) movement patterns performed by play-
ers within each playing position are discussed in the sections below. These signature
movement patterns revealed the unique external load completed by players belonging
to each group.

6.2.1.1 Centres

A total of three thousand three hundred and seven movement patterns were identified
as those performed by centres. The number of times each identified movement pattern
was performed by all centre players varied from one to three hundred and sixty-five
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(a) Centres (b) FiveEighths

(c) Full-Backs (d) Half-Backs

(e) Hookers (f) Loose Forwards

(g) Prop Forwards (h) SecondRows

(i) Wingers

Figure 6.2: Signature Movement Patterns per Playing Positions (Adeyemo, 2023)
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thousand six hundred and ninety-two. Of these identified movement patterns, one thou-
sand two hundred and forty-one movement patterns were uniquely performed (i.e. sig-
nature movement patterns) by elite rugby league centres. This is approximately 37.5%
of the total number of movement patterns identified to be performed by rugby league
centre players. The signature movement patterns performed by elite rugby league cen-
tres are visualised in Figure 6.2a. Some of the frequently performed centres’ signature
movement patterns are “eeeeeea, qquqqq, iiiiiiii, OLP and CDCCC”.

6.2.1.2 Five Eighths

A total of one thousand one hundred and ninety-nine movement patterns were identi-
fied as those performed by five-eighths. The number of times each identified move-
ment pattern was performed by all centre players varied from six to fifty-six thousand
four hundred and five. Of these identified movement patterns, only thirteen movement
patterns were uniquely performed (i.e. signature movement patterns) by elite rugby
league five eights. This is approximately 1.08% of the total number of movement pat-
terns identified to be performed by rugby league five-eighth players. The signature
movement patterns performed by elite rugby league five-eighths are visualised in Fig-
ure 6.2b. These signature movement patterns are characterised by unique combinations
of movement units “u” “v”, “q” “r”, “m”, “n”, “e” and “a”.

6.2.1.3 Full Backs

A total of one thousand five hundred and sixty-one movement patterns were identi-
fied as those performed by full-backs. The number of times each identified movement
pattern was performed by all full-back players varied from one to ninety-six thou-
sand five hundred and seventy-four. Of these identified movement patterns, only one
hundred and twenty-two movement patterns were uniquely performed (i.e. signature
movement patterns) by elite rugby league full-backs. This is approximately 7.82%
of the total number of movement patterns identified to be performed by rugby league
full-backs. The signature movement patterns performed by elite rugby league centres
are visualised in Figure 6.2c. Some of the frequently performed fullbacks’ signature
movement patterns are “TP, yyyyzyyy, nnmo, LT, xxv and SU”.
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6.2.1.4 Half Backs

A total of two thousand eight hundred and eighty-one movement patterns were identi-
fied as those performed by half-backs. The number of times each identified movement
pattern was performed by all full-back players varied from one to one hundred and
sixty-nine thousand nine hundred and fifty-eight. Of these identified movement pat-
terns, only six hundred and twelve movement patterns were uniquely performed (i.e.
signature movement patterns) by elite rugby league half-backs. This is approximately
21.24% of the total number of movement patterns identified to be performed by rugby
league half-back players. The signature movement patterns performed by elite rugby
league centres are visualised in Figure 6.2d. These signature movement patterns are
characterised by unique combinations of movement units “e” “f”, “G”, “v”, “u”, “q”,
“i”, “n” and “m”.

6.2.1.5 Hookers

A total of one thousand two hundred and eighty-two movement patterns were identi-
fied as those performed by hookers. The number of times each identified movement
pattern was performed by all full-back players varied from one to one hundred and
twelve thousand six hundred and four. Of these identified movement patterns, only
three hundred movement patterns were uniquely performed (i.e. signature movement
patterns) by elite rugby league hookers. This is approximately 23.4% of the total num-
ber of movement patterns identified to be performed by rugby league hooker players.
The signature movement patterns performed by elite rugby league centres are visu-
alised in Figure 6.2e. Some of the frequently performed hookers’ signature movement
patterns are “vuuuuq, bbbbb, vwvv, and GTS”. Players within this playing position fre-
quently performed signature movement patterns with a longer number of continuous
movement patterns than in other playing positions.

6.2.1.6 Loose Forwards

A total of one thousand one hundred and seventy-seven movement patterns were iden-
tified as those performed by loose forwards. The number of times each identified
movement pattern was performed by all full-back players varied from four to three
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hundred and seventy-four thousand four hundred and twenty-eight. Of these identi-
fied movement patterns, only thirteen movement patterns were uniquely performed by
elite rugby league loose-forwards. The movement patterns uniquely performed (i.e.
signature movement patterns) by rugby league loose-forward players is approximately
1.11% of the total number of movement patterns performed by players of the playing
position. The signature movement patterns performed by elite rugby league loose for-
wards are visualised in Figure 6.2f. Some of the frequently performed loose forwards’
signature movement patterns are “HGS, jvw, zznmm, and ffefffe”.

6.2.1.7 Prop Forwards

A total of two thousand seven hundred and twelve movement patterns were identified
as those performed by prop forwards. The number of times each identified move-
ment pattern was performed by all full-back players varied from one to one hundred
and forty-five thousand two hundred and forty-nine. Of these identified movement
patterns, only seven hundred and seventy-one movement patterns were uniquely per-
formed (i.e. signature movement patterns) by elite rugby league prop forwards. This
is approximately 28.43% of the total number of movement patterns identified to be
performed by rugby league prop-forward players. The signature movement patterns
performed by elite rugby league prop forwards are visualised in Figure 6.2g. These
signature movement patterns are characterised by unique combinations of movement
units “e” “f”, “v”, “u”, “q”, “i”, “m”, “a” and “r”.

6.2.1.8 Second Rows

A total of one thousand nine hundred and sixty-seven movement patterns were identi-
fied as those performed by second rows. The number of times each identified move-
ment pattern was performed by all full-back players varied from one to one hundred
and fifteen thousand one hundred and sixty-eight. Of these identified movement pat-
terns, only one hundred and ninety-four movement patterns were uniquely performed
(i.e. signature movement patterns) by elite rugby league second rows. This is approx-
imately 9.86% of the total number of movement patterns identified to be performed
by rugby league second row players. The signature movement patterns performed
by elite rugby league second rows are visualised in Figure 6.2h. Some of the fre-
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quently performed second rows’ signature movement patterns are “SSSSSTSSSSSS,
KKKKKLKK, GGGHS, KOOKKOK and uvvuuuuv”.

6.2.1.9 Wingers

A total of three thousand one hundred and seventy-four movement patterns were iden-
tified as those performed by wingers. The number of times each identified movement
pattern was performed by all full-back players varied from one to one hundred and
twenty-eight thousand eight hundred and thirty. Of these identified movement patterns,
one thousand and sixty-six movement patterns were uniquely performed (i.e. signature
movement patterns) by elite rugby league wingers. This is approximately 33.59% of
the total number of movement patterns identified to be performed by rugby league
winger players. The signature movement patterns performed by elite rugby league
wingers are visualised in Figure 6.2i. Some of the frequently performed wingers’ sig-
nature movement patterns are “GGSSSSSSS, uuuuuuuuuGGGGGGG, aeeef, eeife and
fffg”.

6.2.2 RFL Playing Position Classification using Movement Patterns

Across all playing positions, a unique set of seven thousand one hundred and sixty-
seven (7,167) movement patterns were derived by computing the union of the extracted
movement patterns for all players per fixture. This unique set of movement patterns
was used as predictor variables to develop datasets for classification modelling.

Classification results are presented and discussed based on the binary predictor
variable values (i.e., Section 6.2.2.1) and relative frequency count predictor variable
values (i.e., Section 6.2.2.2)

It is noteworthy to point out that the overall default probability of correctly predict-
ing the playing positions of rugby players per fixture among the nine playing positions
is computed as (100 / 9) % i.e., 11.11%.

6.2.2.1 Classification Based on Binary values

Three datasets were generated for classification modelling. The first dataset represents
the original distribution of the player per fixture observations. The second dataset rep-
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resents the undersampled distribution of the player per fixture observations. The third
dataset represents the oversampled distribution of the player per fixture observations.

The performance evaluation of all five (5) classification models fitted on the orig-
inal, oversampled and undersampled “Binary” values datasets were obtained (Table
6.2). Elite Rugby Football League players can be classified into nine playing positions
based on movement patterns via the original “Binary” values dataset at a minimum
accuracy of 10.3%, 0.23 precision, 0.17 recall and 0.1 f1-score as produced by the
Gaussian Naive Bayes model.

The Multi-Layered Perceptron classification model classified rugby league play-
ers on the original “Binary” values dataset at an increased accuracy of 49.96%, 0.46
f1-score, 0.47 recall and 0.49 precision. Random Forest fitted the most accurate clas-
sification model capable of classifying the Rugby Football League elite players into
playing positions at an accuracy of 50.3%, 0.51 precision and 0.42 f1-score and recall
scores respectively.

Four of the five classification models fitted on the original “Binary” values dataset
achieved an accuracy higher than the overall default prediction probability except for
the Gaussian Naive Bayes model. The low performance of the Naive Bayes algorithm
can be associated with its naive assumption of predictor variables whereas the variables
are high-dimensional and there maybe be correlations.

Similarly, RFL players can be classified by the Decision Tree classification model
into their playing positions based on movement patterns via the undersampled “Bi-
nary” data at an accuracy of 10.4%, 0.1 precision, 0.11 recall, and 0.1 F1-score (Table
6.2). The MLP classifier classification model achieved an accuracy of 11.4%, 0.1 pre-
cision and recall score of 0.12 and F1-score of 0.09 via the undersampled “Binary”
dataset. The Random Forest classification model produced the maximum accuracy of
11.7%, and 0.12 F1-score, recall and precision scores respectively.
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6.2 Results and Discussion

The separation accuracies of the selected five machine learning classification mod-
els on the undersampled “Binary” dataset were lower than the overall default prediction
probability in three cases (Decision tree, Gaussian Naive Bayes, and Logistic Regres-
sion classification models). Meanwhile, the accuracies of the other two classifiers (i.e.,
Random Forest and MLP) were slightly but insignificantly higher than the overall de-
fault prediction probability when fitted on the undersampled “Binary” tabular dataset
(Table 6.2). This indicates that more observations are required to improve classification
accuracy of rugby league players into playing positions.

The performances of the classification models towards classification of elite Rugby
Football League players into playing positions based on movement patterns via the
oversampled “Binary” dataset revealed that the Gaussian Naive Bayes classification
model had the minimum accuracy of 23.71%, 0.39 precision, 0.24 recall and 0.19
f1-score (Table 6.2). The Multi-Layered perceptron classification model fitted on the
same dataset produced an accuracy of 71.74% and 0.72 f1-score, recall and precision
scores respectively. The classification model with the maximum performance on the
oversampled “Binary” was Random Forest model with an accuracy of 73.14%, 0.74
precision score and 0.73 f1-score and recall scores respectively. Four of the five classi-
fication models fitted on the oversampled “Binary” dataset had accuracies above 50%
except the Decision tree and Gaussian Naive Bayes classification models. The De-
cision Tree low performance (i.e. underfitting) can be attributed to the large number
of predictor variables as the classification model’s choice of decision splits will be
difficult because of numerous (and maybe correlated) variables (Table 6.2). This is
evident in the performance prowess of the Random Forest model which was able to
build multiple uncorrelated trees with bootstrapped observations that led to excellent
classification accuracy.

Each classification model had better performance on the original “Binary” dataset
(with the exception of Gaussian Naive Bayes of 10.3%) than the undersampled “Bi-
nary” dataset. All classification models produced their best classification performances
on the oversampled “Binary” dataset and the Random Forest classification model was
the most accurate classification model (Table 6.2). In practice, sports practitioners can
utilise the Random Forest model with a binary-based values and a large number of
observations to successfully classify rugby league players into playing positions.
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6.2.2.2 Classification Based on Relative Frequency values

Another three datasets were also generated for this classification modelling. The first
dataset represents the original distribution of the player per fixture observations. The
second dataset represents the undersampled distribution of the player per fixture ob-
servations. The third dataset represents the oversampled distribution of the player per
fixture observations.

The performance evaluation of all five classification models fitted on the origi-
nal, oversampled and undersampled “Rel Freq” datasets were obtained (Table 6.3).
Elite Rugby Football League players were classified into nine playing positions based
on movement patterns via the original “Rel Freq” dataset at the lowest accuracy of
10.41%, 0.24 precision, 0.16 recall and 0.1 f1-score as produced by the Gaussian
Naive Bayes model. The Logistic Regression classification model classified players
of the original “Rel Freq” values dataset at an increased accuracy of 53.53%, 0.46
f1-score, 0.45 recall and 0.53 precision.

Multi-Layered Perceptron fitted the most accurate classification model capable of
classifying Rugby Football League elite players into playing positions on the original
“Rel Freq” dataset at an accuracy of 53.79%, 0.51 precision and 0.49 f1-score and
recall scores respectively. Four of the five classification models fitted on the origi-
nal “Rel Freq” dataset achieved an accuracy higher than the overall default prediction
probability except for the Gaussian Naive Bayes model (Table 6.3). The low perfor-
mance of the Naive Bayes algorithm can be associated with its naive assumption of
predictor variables whereas these variables are highly dimensional and there may be
correlations among them.

Elite Rugby Football League players were classified using movement patterns into
their playing positions by the Decision tree classification model fitted on the undersam-
pled “Rel Freq” dataset at a low accuracy of 9.1% and 0.09 precision, recall and f1-
score scores respectively (Table 6.3). The Gaussian Naive Bayes classification model
achieved an accuracy of 11.58%, 0.07 f1-score, 0.12 recall and 0.11 precision scores
respectively. The Logistic regression classification model produced the highest ac-
curacy of 12.41%, f1-score and precision scores of 0.12 and recall of 0.13 via the
undersampled “Rel Freq” dataset.
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6.2 Results and Discussion

The separation accuracies of the selected five machine learning classification algo-
rithms on the undersampled “Rel Freq” dataset were lower than the default prediction
probability in two cases which are the Decision Tree and Random Forest classification
models (Table 6.3). Meanwhile, the accuracies of the other three classifications model
(i.e., Gaussian Naive Bayes, Logistic Regression and MLP) were slightly higher than
the default prediction probability when fitted on the undersampled “Rel Freq” dataset
(Table 6.3). This result also reinforces that a low number of observations leads to lower
separation accuracy as the classification models’ accuracies are lower in comparison
to models’ accuracies on the original “Rel Freq” dataset.

Using the oversampled “Rel Freq” dataset, the performances of the classification
models towards classification of elite Rugby Football League players into playing po-
sitions based on movement patterns revealed that the Gaussian Naive Bayes classifi-
cation model had the lowest accuracy of 22.09%, 0.38 precision, 0.23 recall and 0.18
f1-score (Table 6.3). The Multi-Layered perceptron classification model fitted on the
same dataset produced an accuracy of 72.85% and 0.73 f1-score, recall and preci-
sion scores respectively. The classification model with the highest performance on the
oversampled “Rel Freq” dataset was the Random Forest model with an accuracy of
73.41%, 0.74 recall score and 0.73 f1-score and precision scores respectively. Four of
the five classification models fitted on the oversampled “Binary” dataset had accura-
cies above 50% except for the Decision tree and Gaussian Naive Bayes classification
models. The Decision Tree low performance (i.e. underfitting) can be attributed to a
large number of predictor variables as the classification choice of decision splits will
be difficult because of numerous (and maybe correlated) variables (Table 6.3). The
Random Forest model performance is attributed to its multiple uncorrelated trees with
bootstrapped observations that led to excellent classification accuracy.

Each classification model had better performance on the original “Rel Freq” dataset
(with the exception of Gaussian Naive Bayes of 10.41%) than on the undersampled
“Rel Freq” dataset. Furthermore, all classification models produced their best classi-
fication performances on the oversampled “Rel Freq” dataset and the Random Forest
classification model was the most accurate (Table 6.3). The comparative analysis of the
performance of the classification models between the original “Binary” and “Rel Freq”
datasets revealed that all classification models had their respective better performance
on the “Rel Freq” dataset. For example, the Multi-Layered perceptron classification
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model had the highest classification accuracy of 53.79% on the original “Rel Freq”
dataset whereas it achieved a 49.96% on the original “Binary” dataset. Similarly, the
Logistic Regression classifier had a better accuracy of 12.41% on the undersampled
“Rel Freq” dataset when compared to its 10.52% accuracy on the undersampled “Bi-
nary” tabular dataset. Also, the Random Forest classifier had a 73.41% accuracy on
the oversampled “Rel Freq” dataset which is not significantly better but higher than its
73.14% accuracy on the oversampled “Binary” dataset.

In the end, the performances of the classification models on the original, undersam-
pled and oversampled “Binary” or “Relative” datasets indicate that accurate classifica-
tion of elite Rugby League players into playing positions based on movement patterns
depends on the total number of observations. A large number of observations can guar-
antee the production of classification models with excellent classification accuracy.
Also, the “Rel Freq” dataset (whether the original or undersampled or oversampled)
offered better separation accuracy.

6.2.2.3 Key Movement Patterns for Classification

Feature Selection
The use of seven thousand one hundred and sixty-seven predictor variables for classifi-
cation modelling of elite rugby players into playing positions is generally bad practice
and does not offer useful practical applications. From the results of classifying elite
rugby league players into playing positions based on two types of predictor variable
values (Section 6.2.2), the “Rel Freq” input datasets (especially on the original input
data) offered better data quality for the classification of players into nine rugby league
playing positions. Hence, the original and oversampled “Rel Freq” input datasets were
considered for this analysis and are referred to as “main” datasets.

Each one of the “main” datasets and its two (2) key movement patterns datasets

(generated using identified key movement patterns) were used as input data to fit classi-
fication models. Altogether, classification models were re-developed and re-evaluated
on the six input datasets. The results of the classification of elite rugby league players
based on identified key movement patterns on each of the main data are presented and
discussed below.
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Original relative frequency dataset

The application of filter-based feature subset selection feature selection method on
the original “Rel Freq” dataset resulted in the identification of varying and different
numbers of key movement patterns. The correlation-based feature subset using the
best first search method identified fifty-four (54) key movement patterns out of the
original “Rel Freq” seven thousand one hundred and sixty-seven (7,167) movement
patterns for classification of elite Rugby Football League players into nine playing po-
sitions. This subset of fifty-four closed contiguous movement patterns had the highest
merit score of 0.126 out of all the four hundred and twenty-one thousand one hundred
and fifty (421,150) evaluated subsets (See Appendix B.1). Also, these identified key
movement patterns are approximately 0.75% of the total number of movement patterns
as predictor variables in the original “Rel Freq” dataset.

The consistency-based feature subset using the best first search method identified
thirty-two (32) key movement patterns out of the original “Rel Freq” seven thou-
sand one hundred and sixty-seven (7,167) movement patterns for classification of elite
Rugby Football League players into playing positions. This subset of thirty-two key
closed contiguous movement patterns had the highest score of 0.999 out of all the two
hundred and sixty-four thousand five hundred and nineteen (264,519) evaluated subsets
(See Appendix B.2). Also, these identified key movement patterns are approximately
0.45% of the total number of movement patterns as predictor variables in the original
“Rel Freq” dataset.

The Multi-Layered Perceptron classifier fitted on the original “Rel Freq” dataset
with seven thousand one hundred and sixty-seven movement patterns as predictor vari-
ables still achieved the highest accuracy of 53.79%, 0.51 precision, f1-score and recall
scores of 0.49 respectively (Table 6.4). However, the Logistic Regression classifier
fitted on the key movement patterns “Rel Freq” datasets with fifty-four movement pat-
terns identified by the correlation-based feature subset selection using the best first
search method achieved an accuracy of 49.83%, 0.49 f1-score, precision and recall
scores of 0.89 (Table 6.4). The Decision Tree classifier fitted on the key movement

patterns “Rel Freq” dataset with thirty-two movement patterns identified by the con-
sistency subset evaluator using the best first search method achieved an accuracy of
48.21%, 0.41 f1-score, 0.44 precision and 0.42 recall score (Table 6.4).
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An interesting result is the performance of the Gaussian Naive Bayes classification
model that achieved an accuracy of 10.41% via seven thousand one hundred and sixty-
seven movement patterns, the same algorithm now achieved an accuracy of 32.37% via
fifty-four movement patterns identified by correlation-based feature subset selection
method and an accuracy of 43.81% via thirty-two movement patterns identified by the
consistency subset evaluator feature selection method.

A similar performance is that of Decision tree model that had a 33.99% accu-
racy using seven thousand one hundred and sixty-seven movement patterns as predic-
tor variables but had an increased accuracy of 48.21% accuracy using the thirty-two
key movement patterns (identified by consistency subset evaluator feature selection
method) and its best model with an increased accuracy of 48.36% using fifty-four key
movement patterns (identified by correlation-based feature subset selection method).
These improvements suggest that the reduced size of key movement patterns as pre-
dictor variables removed correlated variables that hindered the performances of both
classification models.

Given the performances of the classifiers on the main and the key movement pat-

terns original “Rel Freq” input datasets, the averaged classification accuracy scores of
all six classification models peaked at 42% on the main original “Rel Freq” dataset.
Nonetheless, it was closely followed by the averaged classification accuracy of 40.25%
on the key movement patterns original “Rel Freq” dataset with fifty-four key movement
patterns identified by the correlation-based feature subset feature selection method.

Oversampled Relative Frequency dataset

The application of filter-based feature subset selection method on the oversampled
“Rel Freq” tabular datasets also resulted in the identification of varying and the dif-
ferent total number of key movement patterns. The correlation-based feature subset
using the best first search method identified seventy-two (72) key movement patterns
out of the oversampled “Rel Freq” seven thousand one hundred and sixty-seven move-
ment patterns, for the classification of elite rugby league players into playing posi-
tions. This subset of seventy-two key movement patterns had the highest merit score
of 0.228 among the five hundred and forty-eight thousand nine hundred and thirty-
three (548,933) evaluated subsets (See Appendix B.3). These identified key movement
patterns are approximately 1% of the total number of movement patterns as predictor

154



6.2 Results and Discussion

variables in the oversampled “Rel Freq” dataset.
The consistency-based feature subset using the best first search method identified

sixteen (16) key movement patterns out of the oversampled “Rel Freq” seven thou-
sand one hundred and sixty seven (7,167) movement patterns, for the classification of
elite Rugby Football League players into playing positions. This subset of sixteen key
movement patterns had the highest score of 1.0, among the one hundred and fifty thou-
sand three hundred and three (150303) evaluated subsets (See Appendix B.4). Also,
these identified key movement patterns are approximately 0.22% of the total number
of movement patterns as predictor variables in the original “Rel Freq” dataset.

The Random Forest classification model fitted on the oversampled “Rel Freq”
dataset with seven thousand one hundred and sixty-seven movement patterns as pre-
dictor variables still achieved the highest accuracy of 73.41%, 0.74 recall, f1-score and
precision scores of 0.73 respectively (Table 6.5).

The Logistic Regression classification model fitted on the key movement patterns

“Rel Freq” dataset with seventy-two key movement patterns (identified by the correlation-
based feature subset selection using the best first search method) achieved an accuracy
of 67.9% and f1-score, precision and recall scores of 0.68 respectively (Table 6.5).
The Gaussian Naive Bayes classification model fitted on the key movement patterns

“Rel Freq” dataset with sixteen key movement patterns identified by the consistency
subset evaluator using the best first search method achieved an accuracy of 61.27%,
0.59 f1-score, 0.61 precision and 0.62 recall scores (Table 6.5).

An interesting result is the performance of the Decision Tree classification model
that achieved an accuracy of 45.51% via seven thousand one hundred and sixty-seven
movement patterns, the same algorithm achieved an increased accuracy of 61.07% via
thirty-two movement patterns identified by the consistency subset evaluator feature
selection method and another increased accuracy of 63.6% via seventy-two movement
patterns identified by correlation-based feature subset selection method. Similarly, the
performance of the Gaussian Naive Bayes model on the data with seven thousand one
hundred and sixty-seven movement patterns as predictor variables was increased from
22.09% accuracy to 42.3% accuracy using only seventy-two key movement patterns
and later increased to 61.27% accuracy using only sixteen key movement patterns.
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6.2 Results and Discussion

Given the performances of all classifiers on the main and the key movement patterns

oversampled “Rel Freq” dataset, the averaged classification accuracy of all six classi-
fication models peaked at 56% on the main oversampled “Rel Freq” tabular dataset.
This peaked averaged accuracy was followed by the averaged classification accuracy of
52% on the key movement patterns oversampled “Rel Freq” dataset with seven two key
movement patterns identified by the correlation-based feature subset feature selection
method.

These results strongly reinforced the application of feature selection methods to
solve the problem of high dimensional data problem in sport-related classification
modelling. The implemented filter-based feature subset selection methods were able
to identify key movement patterns for the classification of elite Rugby League Foot-
ball players into nine playing positions. Although the key movement patterns could
not help to fitting classification models with improved accuracy, however, it greatly
reduced the number of required movement patterns used as predictor variables without
much accuracy loss.

In a real-time application, given a moderate number of observations, fifty-four key
movement patterns are usable as predictor variables for classifying rugby league play-
ers into nine playing positions at a Logistic Regression accuracy of 49.83% rather than
seven thousand one hundred and sixty-seven movement patterns at 53.53% accuracy.
Similarly, given a large number of observations, seven two key movement patterns can
be used as predictor variables at a Logistic regression of 67.9% accuracy instead of
seven thousand one hundred and sixty-seven movement patterns at a Random Forest
73.41% accuracy. In both cases, the memory consumption rate and execution runtime
will be greatly reduced by using the key movement patterns rather than the original set
of unique movement patterns used as predictor variables. More so, practitioners will
be able to understand the classification models’ predictive prowess based on the key
movement patterns, unlike the original set of unique movement patterns.

Feature Importance and Contribution
Although the feature selection technique was able to identify key movement patterns
as predictor variables for the classification of elite rugby league players into playing
positions, the Random Forest classification model fitted on the oversampled relative
frequency data with all unique movement patterns identified by LCCspm algorithm
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6.2 Results and Discussion

Table 6.6: Top Fifty Unique Movement Patterns and Classification Importance Scores
(Adeyemo, 2023)

Patterns Importance Scores
ij 0.006057
ijj 0.005951
iij 0.005204
ii 0.005152
iii 0.005027
jji 0.004937
jii 0.004933
HH 0.004788
iji 0.004746
jj 0.00453
ji 0.004528
HG 0.004409
ff 0.004348
GH 0.004184
mq 0.00388
jjj 0.003749
GG 0.003727
fb 0.003716
vuv 0.003711
uv 0.003702
vvu 0.003639
uvv 0.003632
jij 0.003599
ab 0.003594
ef 0.003589

Patterns Importance Scores
bbb 0.003567
vu 0.003559
vuvv 0.003531
uuv 0.00353
iiij 0.003521
vuuv 0.003516
uuuu 0.003502
uu 0.003496
no 0.003487
bb 0.003432
qu 0.00343
vv 0.003426
iu 0.003414
ej 0.003403
bba 0.003388
uuu 0.003386
uuvu 0.003371
GGG 0.003348
fff 0.003347
eff 0.003337
qq 0.003328
nn 0.003315
abb 0.003312
jf 0.003305
aa 0.00329

had the highest accuracy of 73.14%, 0.73 f1-score and precision scores respectively
and a 0.74 recall. Hence, the analysis of the feature importance of that model was
conducted.
Feature Importance

The LCCspm algorithm extracted a total of seven thousand one and sixty-seven
unique movement patterns across playing positions. Only two thousand two hundred
and ninety-nine of those unique movement patterns were considered important by the
Random Forest classification Model. This is approximately 32% of the total number
of unique movement patterns used as predictor variables. Other unique movement
patterns had importance scores of zero respectively. The most important movement
pattern as considered by the Random Forest model is “ij” with an importance score of
0.006057 while the least important movement pattern is “feeeeff” with an importance
score of 0.0000000375. The top fifty most important unique movement patterns are
presented in Table 6.6.
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6.2 Results and Discussion

The fifty most important unique movement patterns are characterised by two to
four lengths of closed contiguous sequences of movement units. These top impor-
tant movement patterns used in classifying rugby league players are characterised by
unique combinations of movement units “i” “j”, “H”, “G”, “m”, “q”, “u”, “v”, “u”, “f”,
“b”, “e”, “n” and “o”.

Thirty-one unique movement patterns were ranked by the Random Forest classi-
fication model as important with scores ranging between 0.00351 - 0.0061. Among
these ranked movement patterns are “jji, HG, ff, mq, ab” (in this non-sequential order)
which represent different occurrences of completed external load.

Feature Contribution

The SHAP values contribution of each unique movement pattern used as predictor
variables were obtained and each unique movement pattern was ranked based on the
values. The SHAP values row for each observation was selected from the SHAP value
matrix of each playing position and collated into a new matrix. With the new matrix,
the top fifty contributing unique movement patterns were identified and illustrated in
Figure 6.3a.

For each playing position, the top fifty contributing unique movement patterns were
also identified and illustrated in Figures 6.5b, 6.4 and 6.5. Besides the first eight ranked
movement patterns, other movement patterns’ ranks varied across playing positions.
This suggests that each unique movement pattern contributed more or less information
depending on the rugby league players’ playing positions. For example, the move-
ment pattern “mq” is the twelfth most contributing movement pattern for classifying
players into the centre playing position. However, it is the sixteenth most contribut-
ing movement pattern for classifying players into the five-eighth and half-back playing
position. The same movement pattern is the thirteenth most contributing movement
pattern for classifying players into full-back and second-row playing positions. For
classifying players into hookers or wingers, the same movement pattern is the tenth
most contributing movement pattern while being the fifteenth most contributing move-
ment pattern for classifying players into prop-forwards.
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6.2 Results and Discussion

(a) All playing positions (b) Centres

(c) FiveEighths (d) Full-Backs

Figure 6.3: SHAP values of Top Fifty Movement Patterns Across and per Playing
Positions (Adeyemo, 2023)
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6.2 Results and Discussion

(a) Half-Backs (b) Hookers

(c) Loose Forwards (d) Prop Forwards

Figure 6.4: SHAP values of Top Fifty Movement Patterns per Playing Positions
(Cont’d) (Adeyemo, 2023)
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6.2 Results and Discussion

(a) SecondRows (b) Wingers

Figure 6.5: SHAP values of Top Fifty Movement Patterns per Playing Positions
(Cont’d) (Adeyemo, 2023)

6.2.3 Assessment of Players’ Performance Variability

The set of seventy-two (72) key movement patterns identified by the correlation-based
feature subset using the best first search method on the oversampled relative frequency
data and another set of the top 200 most contributing movement patterns (identified
through SHAP values across playing positions) were analysed for overlap.

Sixteen unique movement patterns overlapped (Table 6.7) between the two sets and
were considered as movement performance indicators useful for performance variabil-
ity assessment of rugby league players across playing positions. For demonstration, the
performance variability of nine elite rugby players each belonging to different playing
positions was assessed and visualised using five (i.e., “SS, vuvvu, mo, HH and jij”) of
the sixteen movement performance indicators.
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6.2 Results and Discussion

Figure 6.6 illustrates the performance variability of a centre rugby league player
based on the selected movement performance indicators. The player participated in
forty-eight matches and the rate (i.e., relative frequency) at which each movement per-
formance indicator was performed per match was obtained and visualised. Based on
“SS” (Sprint Acceleration Straight, Sprint Acceleration Straight) movement perfor-
mance indicator, the player performed this movement performance indicator in sixteen
of forty-eight matches at an average of 0.056 (i.e., 5.63% of all completed external
load per match).

Figure 6.7 illustrates the performance variability of a rugby league five-eighth
based on the selected movement performance indicators. The player participated in
fifty-six matches and the rate (i.e., relative frequency) at which each movement perfor-
mance indicator was performed per match was obtained and visualised. Based on “SS”
(Sprint Acceleration Straight, Sprint Acceleration Straight) movement performance in-
dicator, the player performed this movement performance indicator in six of fifty-six
matches at an average of 0.06 (i.e., 6% of all completed external load per match).

Figure 6.8 illustrates the performance variability of a rugby league full-back based
on the selected movement performance indicators. The player participated in fifty-two
matches and based on “SS” (Sprint Acceleration Straight, Sprint Acceleration Straight)
movement performance indicator, the player performed this movement performance
indicator in forty-four of fifty-two matches at an average of 0.06 (i.e., 6.05% of all
completed external load per match).

Figure 6.9 illustrates the performance variability of a rugby league half-back based
on the selected movement performance indicators. The player participated in fifty-
three matches and the rate (i.e., relative frequency) at which each movement perfor-
mance indicator was performed per match was obtained and visualised. Based on
“SS” (Sprint Acceleration Straight, Sprint Acceleration Straight) movement perfor-
mance indicator, the player performed this movement performance indicator in two
of fifty matches at an average of 0.055 (i.e., 5.5% of all completed external load per
match).
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6.2 Results and Discussion

Figure 6.6: A Centre Player Performance Variability Assessment (Adeyemo, 2023)

Figure 6.10 illustrates the performance variability of a rugby league hooker based
on the selected movement performance indicators. The player participated in forty-
seven matches and the rate (i.e., relative frequency) at which each movement perfor-
mance indicator was performed per match was obtained and visualised. Based on
“SS” (Sprint Acceleration Straight, Sprint Acceleration Straight) movement perfor-
mance indicator, the player performed this movement performance indicator in three
of forty-seven matches at an average of 0.0044 (i.e., 0.44% of all completed external
load per match).

Figure 6.11 illustrates the performance variability of a rugby league loose-forward
based on the selected movement performance indicators. The player participated in
forty-seven matches and the rate (i.e., relative frequency) at which each movement
performance indicator was performed per match was obtained and visualised. The
player does not perform the movement performance indicator “SS” in any of the partic-
ipated matches. Based on “vuvvu” (Jog Acceleration Acute-Change, Jog Acceleration
Straight, [Jog Acceleration Acute-Change]x2, Jog Acceleration Straight) movement
performance indicator, the player performed this movement performance indicator in
thirty-six of forty-seven matches at an average of 0.0667 (i.e., 6.67% of all completed
external load per match).

Figure 6.12 illustrates the performance variability of a rugby league prop-forward
based on the selected movement performance indicators. The player participated in
forty-three matches and the rate (i.e., relative frequency) at which each movement per-
formance indicator was performed per match was obtained and visualised. The player
performed the movement performance indicator “SS” only in one match at the relative
frequency of 0.13 (i.e., 13% of all completed external load in the match). Based on
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6.2 Results and Discussion

Figure 6.7: A Winger Player Performance Variability Assessment (Adeyemo, 2023)

Figure 6.8: A Full-Back Player Performance Variability Assessment (Adeyemo, 2023)

Figure 6.9: A Half-Back Player Performance Variability Assessment (Adeyemo,
2023)

Figure 6.10: A Hooker Player Performance Variability Assessment (Adeyemo, 2023)
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6.2 Results and Discussion

Figure 6.11: A Loose-Forward Player Performance Variability Assessment
(Adeyemo, 2023)

Figure 6.12: A Prop-Forward Player Performance Variability Assessment (Adeyemo,
2023)

Figure 6.13: A Second-Row Player Performance Variability Assessment (Adeyemo,
2023)

Figure 6.14: A Winger Player Performance Variability Assessment (Adeyemo, 2023)
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6.3 Chapter Summary

“vuvvu” (Jog Acceleration Acute-Change, Jog Acceleration Straight, [Jog Accelera-
tion Acute-Change]x2, Jog Acceleration Straight) movement performance indicator,
the player performed this movement performance indicator in forty-two of forty-three
matches at an average of 0.108 (i.e., 10.79% of all completed external load per match).

Figure 6.13 illustrates the performance variability of a rugby league second-row
based on the selected movement performance indicators. The player participated in
forty-five matches and the rate (i.e., relative frequency) at which each movement per-
formance indicator was performed per match was obtained and visualised. Based on
“SS” (Sprint Acceleration Straight, Sprint Acceleration Straight) movement perfor-
mance indicator, the player performed this movement performance indicator in twenty-
one of forty-five matches at an average of 0.0543 (i.e., 5.43% of all completed external
load per match).

Figure 6.14 illustrates the performance variability of a rugby league winger based
on the selected movement performance indicators. The player participated in fifty
matches and the rate (i.e., relative frequency) at which each movement performance
indicator was performed per match was obtained and visualised. Based on “SS” (Sprint
Acceleration Straight, Sprint Acceleration Straight) movement performance indicator,
the player performed this movement performance indicator in six of fifty matches at
an average of 0.05 (i.e., 5.5% of all completed external load per match).

6.3 Chapter Summary

In the previous chapter, LCCspm algorithm was validated as the pattern mining algo-
rithm but with some limitations. This PhD study, through this chapter, resolved those
limitations by applying the LCCspm algorithm for the extraction and identification of
frequent movement patterns from sets of movement sequences of elite Rugby Football
League players to profile and classify players into all nine rugby league playing posi-
tions. The relative frequency as predictor variables value was ascertained as the better
type of value. Also, significant movement patterns were identified by using filter fea-
ture subset selection methods as well as SHAP value feature contribution methods. A
set of Movement Performance Indicators was identified and demonstrated for players’
performance variability assessment.

Signature movement patterns for each rugby league playing position were discov-
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6.3 Chapter Summary

ered. The signature movement characterised unique combinations of closed contiguous
movement units for each position and the number of identified signature movements
varied from one playing position to the other. Both Five-Eighth and Loose-Forward
playing positions had the least number of signature movement patterns (i.e. thirteen
movement patterns). Meanwhile, the Centre playing position had the highest number
of identified signature movement patterns.

For the classification of elite rugby league players into all nine playing positions,
the Random Forest classification model fitted on the oversampled “Rel Freq” dataset
had the highest accuracy of 73.41%. These results indicate that the relative frequency
of performed movement patterns is better and more appropriate as predictor variable
values for classifying rugby players into individual playing positions. Also, the results
suggest that the separation of rugby league players into playing positions requires a sig-
nificant number of observations per position and the development of a fairly balanced
dataset with respect to playing position observations.

Due to the high number of extracted movement patterns used for classifying elite
rugby league into all nine playing positions, key movement patterns were identified
by applying the correlation-based feature subset selection using the best-first search
method as a feature selection technique. The dataset with the relative frequency of
performed movement patterns as value and its oversampled variant was considered for
key movement pattern identification analysis. Fifty-four (54) key movement patterns
of 7,167 movement patterns were identified by the correlation-based feature subset-
selection technique on the “Rel Freq” dataset while thirty-two (32) key movement
patterns were identified by the consistency subset evaluator technique. Seventy-two
(72) key movement patterns were identified by the correlation-based feature subset-
selection technique on the oversampled “Rel Freq” dataset while sixteen (16) key
movement patterns were identified by consistency subset evaluator technique. For all
classification models fitted on datasets for classification based on key movement pat-
terns, the Logistic Regression classification model fitted on the oversampled “Rel Freq”
dataset with seventy-two key movement patterns had the highest accuracy of 67.9%.

A set of Movement Performance Indicators was identified for players’ performance
variability assessment. Sixteen movement patterns were identified as Movement Per-
formance Indicators. This set of Movement Performance Indicators was identified
across playing positions through the integration of the feature selection method and
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6.3 Chapter Summary

feature contribution results. Performance variability assessment of elite rugby league
players was demonstrated using nine players (one from each playing position). Each
player’s performance differs based on each Movement Performance Indicator. Also,
players belonging to different playing positions recorded different rates of completing
the external load represented by a Movement Performance Indicator.

Based on these results, this PhD study through this chapter achieved its fourth ob-
jective and claims that user-defined length of frequent closed contiguous movement
patterns extracted by the LCCspm algorithm can be used to identify signature move-
ment patterns for profiling elite rugby league players into playing positions. Also,
LCCspm algorithm extracted frequent closed contiguous movement pattern that is us-
able as predictor variables to classify elite rugby league players into nine playing po-
sitions and relative frequency is the appropriate predictor variable value. Also, the
LCCspm algorithm extracts movement patterns (through the integration of other ad-
vanced analytics techniques) set(s) of significant movement patterns for assessing elite
rugby league players’ performance variability across playing positions.
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Chapter 7
Conclusions

The main discourse of this PhD study is that movement patterns can be identified from
rugby football league players’ GPS data to quantify players’ external load and uncover
players’ behavioural movement patterns during matches for various applications.

Existing frameworks for player movement profiling (Sweeting et al., 2014, 2017;
White et al., 2021) are limited by the algorithms implemented to find and extract move-
ment patterns. Four criteria (i.e., user-specified maximal length, item contiguousness,
user-defined frequency threshold and frequent pattern lossless compression) of a suit-
able algorithm for player movement profiling were identified. A review of other ex-
isting sequential pattern mining algorithms (with respect to the first objective of this
PhD study) revealed that the state-of-the-art algorithm for extracting frequent closed
contiguous movement patterns (i.e., CCSpan) (Zhang et al., 2015) satisfied only three
of the four criteria of a suitable algorithm for player movement profiling beside suffer-
ing other limitations (Abboud et al., 2017; Bermingham and Lee, 2020) such as being
unable to scale well on a large and lengthy set of sequences that characterise sport big
data. Chapter 4 outlined the rationale for a user-defined length of frequent closed con-
tiguous movement patterns for player movement profiling. A sequential pattern mining
algorithm was developed (with respect to this PhD study’s second objective) based on
a snippet-growth method for candidate pattern generation. The inverse characteristic

of frequent contiguous patterns was explored to identify the frequent closed contiguous
patterns. An implementation of l-length closed contiguous sequential pattern mining
algorithm (LCCspm) incorporating all these attributes was described.
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LCCspm was empirically tested for efficiency and effectiveness using natural sport-
related big data pattern mining datasets. The experiment on rugby league and foot-
ball datasets showed that LCCspm can extract patterns faster, uses lower memory and
scales better while extracting patterns from any size of a given set of sequences than
CCSpan. Additionally, LCCspm effectively extracts patterns even from a given set
of sequences with extremely long sequences. Results of LCCspm (Time-Optimised)
further reinforced the efficiency, effectiveness and applicability of LCCspm to extract
patterns from a set of sequences with a faster execution runtime. The LCCspm (Time-
Optimised), however, consumes more computer memory for extracting patterns. Both
LCCspm (Memory and Time - Optimised) variants do not fail to extract user-defined
lengths of frequent closed contiguous patterns given any support parameter. Both
LCCspm algorithms, developed by this PhD study, outperformed the state-of-the-art
(i.e., CCSpan) algorithm (Zhang et al., 2015) for frequent closed contiguous sequen-
tial pattern mining in terms of scalability and execution runtime while providing more
functionality.

The best type of movement patterns useful for player movement profiling (in the
context of player position separation) was identified in Chapter 5 through an experi-
mental process. The sequential but non-consecutive movement patterns of the existing
SMP framework (White et al., 2021) and the frequent closed non-consecutive and non-
sequential movement patterns of AprioriClose algorithm (Pasquier et al., 1999) were
compared against the sequential and consecutive movement patterns of LCCspm (with
respect to this PhD study’s third objective) to profile elite RFL players into two rugby
league playing positions (i.e. hookers and wingers) known to be tactically different.
Based on obtained results from three step-wise analyses, LCCspm was validated as the
algorithm that produced the best type of movement patterns to profile players’ move-
ment.

Consequently, in Chapter 6, practical applications of LCCspm movement patterns
(with respect to this PhD study’s fourth objective) to identify sets of signature move-
ment patterns of each RFL playing position, classify players into nine playing positions
and establish “Movement Performance Indicators” across RFL playing positions was
carried out. These practical applications are immensely useful for talent identification
and recruitment (Vaeyens et al., 2008; Williams and Reilly, 2000), training customi-
sation and players’ pathway development (Adeyemo et al., 2022; Whitehead et al.,
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7.1 Practical Implications

2021) and assessment of players’ performance variability (Hrovat et al., 2015) among
others. Varying numbers of signature movement patterns were identified across play-
ing positions, with centres having the highest number of signature patterns (i.e. 1241).
Classification of RFL players into playing positions can be accurately carried out at
73.41% using a Random Forest model with 7,167 movement patterns as predictor
variables. However, a Logistic Regression model was developed using only 72 move-
ment patterns as predictor variables, with a classification accuracy of 67.9% to classify
RFL players into playing positions. The relative frequency of movement patterns is
the appropriate value useful to complete such classification analysis. Also, a set of
16 “Movement Performance Indicators” were established and used to assess players’
performance variability. Each player’s performance differs based on each Movement
Performance Indicator. Also, players belonging to different playing positions recorded
different rates of completing the external load represented by a Movement Performance
Indicator.

7.1 Practical Implications

The research findings offer valuable insights and applications that can benefit practi-
tioners and the sports industry as a whole. The practical implications of this study are
highlighted as follows:

1. Advancements in Computing and Sports Analytics:

• The LCCspm algorithm and the introduced techniques contribute to the
advancement of pattern mining algorithms and sports analytics.

• The LCCspm algorithm can be applied in other sports domains, allowing
for more accurate analysis and insights into player behaviour and team dy-
namics.

2. Tactical Decision-Making and Team Composition:

• The successful application of LCCspm in classifying rugby league players
into tactically different positions provides a valuable tool for team compo-
sition decisions.
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7.2 Summary of Contributions

• Coaches and team management can leverage this information to optimize
team strategies, match player strengths with specific positions, and enhance
overall team performance.

3. Signature Movement Patterns and Game Understanding:

• The identification of signature movement patterns specific to rugby league
players enhances the understanding of player behaviour within the game.

• Practitioners can use this knowledge to develop targeted training programs,
improve tactical decision-making, and enhance team performance.

4. Enhanced Player Evaluation and Performance Optimization:

• The LCCspm algorithm and the developed Movement Performance Indi-
cators (MPIs) enable a comprehensive assessment of players’ performance
variability.

• Practitioners can utilize these insights to identify areas of improvement,
optimize training programs, and tailor individualized coaching strategies
leading to more informed strategies and player management.

5. Generalization to Other Domains:

• The insights and methodologies gained from this research can be extended
beyond rugby league and applied to other sports or domains where the se-
quential quantification of activities plays a crucial role.

• This widens the potential impact of the study in areas such as team sports,
individual athletics, and human motion analysis.

The findings provide actionable insights for coaches, trainers, analysts, and the
sports industry, ultimately leading to improved performance outcomes and a deeper
understanding of player behaviour in competitive sports.

7.2 Summary of Contributions

1. This PhD study contributes to the body of knowledge through the proposal, for-
mulation, development, optimisation and performance evaluation of a novel pat-
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7.3 Limitations and Future Works

tern mining algorithm that serves player movement profiling. This fulfilled the
second objective of this PhD study and also make a contribution to the body of
knowledge.

2. This PhD study also contributes to the body of knowledge through the iden-
tification of (and thus validates) the best pattern mining algorithm for player
movement profiling in the context of playing position. This fulfilled the third
objective of this PhD study.

3. This PhD study conducted the first attempt to classify elite rugby league players’
into playing positions based on movement patterns as predictor variables, ascer-
tained the appropriate predictor variable values and identified key movement
patterns useful for such classification. This partially fulfilled the fourth objective
of this PhD study and also make a contribution to the body of knowledge.

4. The discovery of signature movement patterns of each elite rugby league playing
position (i.e., only performed by players belonging to a specific playing position)
is also among the significant contributions of this PhD study. This partially ful-
filled the fourth objective of this PhD study

5. Also, the identification of a set of significant movement patterns as “Movement
Performance Indicators” and its use to assess and visualise players’ performance
variability over participated competitive matches is also considered to be another
contribution of this PhD study. This partially fulfilled the fourth objective of this
PhD study.

7.3 Limitations and Future Works

The greatest limitation of identifying frequent movement patterns from rugby league
GPS data is that external loads of players per match were represented as a set of dis-
crete movement sequences. This representation affects the computed frequency of
extracted movement patterns. An ideal solution is to represent a set of discrete move-
ment sequences of players per match as a single sequence. This will affect the support
of extracted movement patterns and will influence the movement patterns identified as
frequent for various applications.
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7.3 Limitations and Future Works

Another limitation of the PhD study design is that the lowest granularity for analysing
GPS data (i.e. player per fixture level) was considered. However, other granularity
such as player level or playing position level (per match or across matches) can be
considered which may yield different results.

The optimised variant of LCCspm is limited in its consumption of large computer
memory. Although computer memory is becoming a disposable resource in this mod-
ern time, the implementation of another efficient data structure to store the vertical
representation of candidate patterns and index pairs should be considered in the fu-
ture. Also, other interestingness measures can be integrated into both LCCspm and its
optimised variant algorithms in addition to the frequency and maximal length interest-
ingness measures.

It would be interesting to apply LCCspm to discover movement patterns leading to
injuries in rugby league, such as non-contact and soft tissue, hamstring and or anterior
cruciate ligament (ACL) injuries. Rugby league is an intense contact team sport where
players experience high levels of physical stress. A body of a typical elite rugby league
player undergoes and responds to enormous stress and fatigue. Current research on in-
jury prevention or detection in sports at large considers aggregated physical indicators
(over a period) to assess injury in players. The use of movement patterns to assess
injury risk in players will provide a more detailed granular level of information for
injury risk assessment, injury prediction and or detection.

This PhD study focused more on player movement profiling based on GPS data,
however, match events data are also collected during competitive matches. It would
equally be interesting to analyse match events data with respect to the sequential nature
of match events. This can be useful for technical-tactical analysis such as opposition
analysis or attacking tactics analysis, especially in a team or individual sports where
sequential order of match events is important.
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Gate Keeper Consent Form 
 

Researcher’s Name ADEYEMO, Victor Elijah  

University  School of Built Environment, Engineering and Computing 
Leeds Beckett University 

Course PhD 

Project Title Data Management, Mining, and Analytics: An Intensive Application for 
Sports Performance 

Director of Studies Dr Anna Palczewska  

Supervisor Dr Abdulrahman Altahhan  

Advisor Prof Ben Jones

 

To: Dave Rotheram,  

Chief On-Field Officer, 

Rugby Football League (RFL). 

 

This consent form serves as a medium for the researcher to request access, store and make use of 

the data owned and managed by your organisation for the above named project title towards the 

completion of his doctoral research for the School of Built Environment, Engineering and Computing, 

Leeds Beckett University, United Kingdom. 

 

The aim of this project is to optimally manage athletes’ data in order to develop and apply novel 

advanced data mining and analytics techniques for athletes’ movement profiling and assessment of 

athletes’ performance in sports. The required objectives to achieve this aim are to: 

1) design and develop a central database that optimally manages athletes’ data (i.e. a backend 

for data acquisition and integration of various homogeneous data sources and its management. In 

addition, a front end for generating report and exportation); 

2)  design and develop an algorithm for athletes’ movement patterns: 

a) develop a novel algorithm for l-length frequent consecutive sequences (l-LFCS), 

b) apply the algorithm developed in objective two (2a) to rugby sports data; 

3) develop a robust framework for rugby athlete frequent and unique movement profiling (i.e. a 

novel or hybridized method capable of identifying the unique movement of athletes and even based on 

position); and 

4) design and develop a novel method for assessing player performance. 

 

It is expected that this project output the following outcomes that will be beneficial to the club: 

-i- highly optimized database schema for rugby sports data; 

-ii- An organized central database (proof-of-concept) with front and back ends for swift storage, 

reporting and analysis enablement; 

-iii- a designed and developed novel algorithm for finding L-length frequent consecutive sequences 

from data strings which must have the aforementioned constraints; 

-iv- an implementation of (-iii-) in the form of Python/R libraries which will enable athlete movement 

sequence analysis. 

-v- a designed and developed method for finding frequent movement signatures of rugby sports 

athletes. 

Figure A.2: The Rugby Football League Inform Consent
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Appendix B
Feature Selection Results

B.1 Correlation-based Subset Evaluator Technique on
original relative frequency Data

=== Run information === Evaluator: weka.attributeSelection.CfsSubsetEval
Search: weka.attributeSelection.BestFirst -D 1 -N 5
Relation: RugbyLeaguePMPatterns rel-weka.filters.unsupervised.attribute.Remove-R7168,7170
Instances: 4640
Attributes: 7168
list of attributes omitted
Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===
Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 421,150
Merit of best subset found: 0.126
Attribute Subset Evaluator (supervised, Class (nominal): 7168 Position):
CFS Subset Evaluator
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B.2 Consistency-based Subset Evaluator Technique on original relative
frequency Data

Including locally predictive attributes
Selected attributes: 92, 235, 297, 346, 672, 721, 725, 881, 999, 1141, 1163, 1452,
1658, 1687, 1856, 1956, 1976, 2300, 2392, 2422, 2622, 2831, 2966, 2991, 3049, 3070,
3206, 3238, 3308, 3526, 3629, 3681, 3705, 3851, 3996, 4071, 4121, 4314, 4465, 4478,
5002, 5229, 5297, 5310, 5422, 5624, 5717, 5737, 5879, 6101, 6668, 6705, 6897, 7065
: 54

SST, ij, no, iij, jiii, jjj, ijj, bbb, uvuuuvu, jj, ST, HHG, SSS, quuuu, vuuuvv, qv, ijjj,
SS, eff, nb, rm, jf, ru, mr, mo, HH, uqu, uuvuvv, vuuvu, uuuv, vvv, vvuuuv, vv, vvuuu,
GH, efa, ff, jjjj, vvvuuu, jje, if, jjf, quv, jjii, vuuuvuu, fb, fff, jji, HGH, je, TS, mq, iijj,
and GHH.

B.2 Consistency-based Subset Evaluator Technique on
original relative frequency Data

=== Run information ===
Evaluator: weka.attributeSelection.ConsistencySubsetEval
Search: weka.attributeSelection.BestFirst -D 1 -N 5
Relation: RugbyLeaguePMPatterns rel-weka.filters.unsupervised.attribute.Remove-R7168,7170
Instances: 4640
Attributes: 7168
list of attributes omitted
Evaluation mode: evaluate on all training data
=== Attribute Selection on all input data ===
Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 264,519
Merit of best subset found: 0.999
Attribute Subset Evaluator (supervised, Class (nominal): 7168 Position):
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B.3 Correlation-based Subset Evaluator Technique on Oversampled Relative
frequency Data

Consistency Subset Evaluator
Selected attributes: 225, 284, 297, 346, 621, 701, 721, 725, 975, 1268, 1637, 1713,
1794, 1844, 1850, 1882, 2422, 2831, 2961, 2991, 3049, 3498, 3705, 4513, 4826, 5737,
5762, 5918, 6058, 6226, 6495, 7108 : 32

eef, cb, no, iij, mmm, bc, jjj, ijj, uq, kj, fg, be, ju, jk, fa, vuvvu, nb, jf, HG, mr, mo,
vvuuv, vv, oo, fj, jji, jii, on, iie, mb, gf, and vuvuu.

B.3 Correlation-based Subset Evaluator Technique on
Oversampled Relative frequency Data

=== Run information ===
Evaluator: weka.attributeSelection.CfsSubsetEval
Search: weka.attributeSelection.BestFirst -D 1 -N 5
Relation: RugbyLeaguePMPatterns rel SMOTE
Instances: 6825
Attributes: 7168
list of attributes omitted
Evaluation mode: evaluate on all training data
=== Attribute Selection on all input data ===
Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 548933
Merit of best subset found: 0.228
Attribute Subset Evaluator (supervised, Class (nominal): 7168 Position):
CFS Subset Evaluator
Including locally predictive attributes
Selected attributes: 235, 301, 346, 672, 721, 725, 755, 813, 881, 1163, 1452, 1561,
1637, 1658, 1794, 1850, 1882, 1956, 1976, 2025, 2300, 2422, 2622, 2831, 2884, 2991,
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B.4 Consistency-based Subset Evaluator Technique on Oversampled Relative
frequency Data

3049, 3051, 3070, 3143, 3157, 3206, 3308, 3584, 3635, 3681, 3682, 3837, 3900, 3951,
4314, 4465, 4478, 4489, 4671, 4773, 4826, 4874, 5002, 5142, 5229, 5297, 5310, 5422,
5595, 5624, 5717, 5737, 5879, 5918, 6099, 6101, 6122, 6311, 6318, 6597, 6668, 6705,
6714, 6736, 6897, 7065 : 72

ij, nq, iij, jiii, jjj, ijj, TSS, mno, bbb, ST, HHG, efff, fg, SSS, ju, fa, vuvvu, qv, ijjj,
uvuuuvuu, SS, nb, rm, jf, jie, mr, mo, vuuvuu, HH, fi, iv, uqu, vuuvu, vvuvu, vvuv,
vvuuuv, effff, uuvvv, nno, uG, jjjj, vvvuuu, jje, vuuvvu, jv, jfe, fj, eij, if, ffff, jjf, quv,
jjii, vuuuvuu, nr, fb, fff, jji, HGH, on, vvvuu, je, ej, jij, om, GGH, TS, mq, uvuuuv,
ffef, iijj, and GHH.

B.4 Consistency-based Subset Evaluator Technique on
Oversampled Relative frequency Data

=== Run information ===
Evaluator: weka.attributeSelection.ConsistencySubsetEval
Search: weka.attributeSelection.BestFirst -D 1 -N 5
Relation: RugbyLeaguePMPatterns rel SMOTE
Instances: 6825
Attributes: 7168
list of attributes omitted
Evaluation mode: evaluate on all training data
=== Attribute Selection on all input data ===
Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 150303
Merit of best subset found: 1
Attribute Subset Evaluator (supervised, Class (nominal): 7168 Position):
Consistency Subset Evaluator
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B.4 Consistency-based Subset Evaluator Technique on Oversampled Relative
frequency Data

Selected attributes: 701, 721, 725, 1141, 1561, 1647, 2771, 3157, 3491, 3635, 3705,
4121, 4778, 4826, 5624, 5737 : 16
bc, jjj, ijj, jj, efff, rv, nmmn, iv, vvvv, vvuv, vv, ff, ur, fj, fb, and jji.
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